Tensorflow笔记——第一讲 神经网络计算(1.1 1.2 1.3)

1.1人工智能学派

行为主义

基于控制论,构建感知-动作控制系统(如平衡、行走、避障等自适应控制系统)

符号主义

基于算术逻辑表达式,求解问题先把问题描述为表达式,再求解表达式(可用公式表示,实现理性思维)

连接主义

仿生学,模仿神经元连接关系(仿脑神经元连接,实现感性思维)

1.2神经网络设计过程

准备数据

采集大量(特征,标签)数据

搭建网络

搭建神经网络结构
在这里插入图片描述

优化参数

优化连接的权重,训练网络获取最佳参数(反向传播)
在这里插入图片描述

应用网络

将网络保存为模型,输入新数据,输出分类或预测结果(前向传播)
在这里插入图片描述
Examples:用神经网络实现鸢尾花分类

前向传播
在这里插入图片描述

y0 = x0 * w0,0 + x1 * w1,0 + x2 * w2,0 + x3 * w3,0 + b0 =  1.01
y1和y2依次类推

损失函数在这里插入图片描述
Attention:损失函数有很多种定义的方法,吴恩达ML视频中的定义如下
Loss function(单个训练样本):L(y, y_) = -(y_logy + (1-y_)log(1-y))

反向传播
·梯度:函数对各参数求偏导后的向量
·梯度下降法:沿损失函数梯度下降的方向,寻找损失函数的最小值,得到最优参数的方法
·学习率(learning rate):设置过小,收敛过程会十分缓慢;设置过大,可能会在最小值附近来回震荡,甚至无法收敛
在这里插入图片描述

1.3张量生成

张量的定义

·张量:多维数组(列表)
·阶:张量的维数

维数 名字 例子
0-D 0 标量scalar s = 123
1-D 1 向量vector v = [1,2,3]
2-D 2 矩阵matrix m = [[1,2,3], [4,5,6], [7,8,9]]
n-D n tensor t = [[[…[(n个左括号)

数据类型

·tf.int, tf.float
tf.int32, tf.float32, tf.float64

·tf.bool
tf.constant([True, False])

·tf.string
tf.constant(“Hello, world!”)

如何创建一个Tensor

创建一个张量

import tensorflow as tf

a = tf.constant([1, 5], dtype=tf.int64
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值