【论文笔记】传统医学图像配准综述

本文概述了医学图像配准的概念,强调其在疾病诊断和治疗中的重要性。介绍了配准的分类,如刚体、仿射和非线性变换,并详细阐述了配准通用流程,包括相似性测度、图像插值和优化算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前我还处于研零阶段,因为毕设原因,需要研究配准这一方向,故把自己学习的一些论文或资料整理记录在博客上。如有不正确的地方,还请指正。

一、前言

因为之前对医学图像配准这个方向一无所知😭,所以前两个星期主要了解了一下配准是什么、为什么和怎么做的问题。在查文献时,我主要看的还是一些中文的综述文献,可以帮助我快速领略到一些领域的common sense。同时我也注意到,深度学习逐渐应用到配准领域。所以第一周主要调研一下传统配准,第二周调研基于深度学习的配准。可能并不是很全面,以后有时间再慢慢补充。

二、什么是配准

1.概念

对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像(浮动图像)映射到另一幅图像(参考图像)上,使他们之间对应点达到空间上的一致。

2.表示

  • M(x,y,z)代表浮动图像(moving image),F(x,y,z)代表参考图像(fixed image),S(·)是配准测度函数,T(·)是空间变换
   S(T(·)) = S(F(x,y,z), T(M(x,y,z)))
  • C表示变换模型的参数。当采用相似性测度函数时,使测度函数值达到max的参数为最优参数;采用差异性测度函数时,使测度函数值达到min的参数为最优参数
	C* = arg max S(g(C))

	C* = arg min S(g(C))
<
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值