目前我还处于研零阶段,因为毕设原因,需要研究配准这一方向,故把自己学习的一些论文或资料整理记录在博客上。如有不正确的地方,还请指正。
一、前言
因为之前对医学图像配准这个方向一无所知😭,所以前两个星期主要了解了一下配准是什么、为什么和怎么做的问题。在查文献时,我主要看的还是一些中文的综述文献,可以帮助我快速领略到一些领域的common sense。同时我也注意到,深度学习逐渐应用到配准领域。所以第一周主要调研一下传统配准,第二周调研基于深度学习的配准。可能并不是很全面,以后有时间再慢慢补充。
二、什么是配准
1.概念
对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像(浮动图像)映射到另一幅图像(参考图像)上,使他们之间对应点达到空间上的一致。
2.表示
- M(x,y,z)代表浮动图像(moving image),F(x,y,z)代表参考图像(fixed image),S(·)是配准测度函数,T(·)是空间变换
S(T(·)) = S(F(x,y,z), T(M(x,y,z)))
- C表示变换模型的参数。当采用相似性测度函数时,使测度函数值达到max的参数为最优参数;采用差异性测度函数时,使测度函数值达到min的参数为最优参数
C* = arg max S(g(C))
C* = arg min S(g(C))
<