详细解读字节跳动视频生成模型StoryDiffusion:连环画创作和长视频生成

本文详细解读字节跳动的StoryDiffusion模型,该模型能生成主题一致的图像序列及长视频。采用Consistent Self-Attention保持图像中人物一致性,通过语义运动预测器预测帧间转换,实现视频生成。同时,提供了代码链接供读者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Diffusion Models专栏文章汇总:入门与实战

前言:最近字节跳动提出了一项关于特征一致图像生成的工作StoryDiffusion,可以生成一系列特征主题相关的图像,还可以扩展成具有时间一致性的帧序列,从而组成长视频。这篇博客火速解读这篇最新的工作,包括论文和代码。

目录

贡献概述

方法详解

第一阶段:基于Consistent Self-Attention的主题相关的图片生成

第二阶段:转换视频生成

代码

个人感悟


贡献概述

作者自己概括的三点贡献:

1、我们提出了一个无训练和热插拔注意模块,称为一致自注意力。它可以保持一系列生成的图像中字符的一致性,用于具有高文本可控性的讲故事。

2、我们提出了一种新

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值