StoryDiffusion Consistent Self-attention for Long-range Image And Video Generation

StoryDiffusion: Consistent Self-attention for Long-range Image And Video Generation

TL; DR:一阶段通过生图 batch 内自注意 KV 共享,生成主题一致的图片。二阶段根据这些图片进行特征插值并作为条件生成中间帧,最后得到视频。


方法

Story Diffusion 整体上可以分为两个阶段,第一阶段在生图模型中插入 Consistent Self-Attention(CSA)模块,来生成主题一致的图片。这一阶段是不需要训练的。第一阶段生成的主题一致图片就直接可以用来拼成故事画了,也可以输入到第二阶段。第二阶段,根据第一阶段生成的主体一致图片,生成一致转场视频。

第一阶段

一个故事中有多个故事分镜,每个文本描述 prompt 对应一个分镜图片。Story Diffusion 第一阶段要做的事情就是在生成多张背景不同的分镜图片时,保持故事中的(多个)人物在所有分镜图片中的形象(脸部、服装、配饰等)保持一致。

Story Diffusion 第一阶段的 CSA 与 ConsiStory 中的 SDSA 思路类似,即通过在同一个 batch 内,UNet 的注意力层在各图片之间进行 KV 共享,使得 batch 内不同图片可以彼此交互,从而实现主题一致的生成结果。但是 CSA 取交互 KV 的方式与 SDSA 有所不同,是在同 batch 内随机找另一张图片取 KV。而且 CSA 的 KV 共享只做在 UNet 的自注意力层中,交叉注意力层不做。

第一阶段,生成主题一致图片的核心模块 CSA 及其如何插入到标准 UNet 中的示意图如下所示。具体来说,记一个 batch 内的图片特征为 I ∈ R B × N × C \mathcal{I}\in\mathbb{R}^{B\times N\times C} IRB×N×C ,其中 B , N , C B,N,C B,N,C 分别为 batch size,每张图片的 token 个数以及通道数。标准的自注意力是在每张图片的特征自身进行的,表示为:
O i = Attention ( Q i , K i , V i ) O_i=\text{Attention}(Q_i,K_i,Vi) Oi=Attention(Qi,Ki,Vi)
其中 Q i , K i , V i Q_i,K_i,V_i Qi,Ki,Vi 分别是第 i i i 个图片特征 I i I_i Ii 经过线性变换得到的。

在这里插入图片描述

在 Story Diffusion 的 CSA 中,为了实现 batch 内的特征交互,对第 i i i 个图片特征,首先从 batch 内的其他图片特征中随机选一个:
S i = RandSample ( I 1 , … , I i − 1 , I i + 1 , … , I B ) S_i=\text{RandSample}(I_1,\dots,I_{i-1},I_{i+1},\dots,I_B) Si=RandSample(I1,,Ii1,Ii+1,,IB)
然后将 S i S_i Si 与原特征 I i I_i Ii 拼接起来得到 P i P_i Pi ,再经过线性映射,得到新的 key 和 value: K P i , V P i K_{P_i},V_{P_i} KPi,VPi 。再进行注意力计算:
O i = Attention ( Q i , K P i , V P i ) O_i=\text{Attention}(Q_i,K_{P_i},V_{P_i}) Oi=Attention(Qi,KPi,VPi)
这样,batch 内的图片在生成时能够相互交互,从而保持主题的一致。

另外,为了解决在生成较长故事时 batch 过大,显存不足的问题,Story Diffusion 还采用了滑窗机制来进行生成,具体伪代码如下所示:

在这里插入图片描述

第二阶段

Story Diffusion 的第二阶段是在第一阶段生成的一系列主题一致图片的基础上,进一步生成视频。也就是在每两张图片之间插帧,生成连贯的视频,相当于是一个给定首尾帧,生成中间帧的视频生成任务。作者指出现有的工作(SparseCtrl 和 SEINE),在首尾两帧差异过大时,生成效果不够稳定。作者认为这是因为他们只依赖于时序模块来生成中间帧,所以对首尾帧差距太大的情况处理得不够好。

本文提出的视频插帧方法如下图所示。对于给定的首尾两帧图片,首先通过一个图像编码器(CLIP)提取它们的特征。然后通过线性插值,得到中间帧的特征。并经过 n 层 Transformer Block 进行处理。再将各帧的特征作为条件,(与 prompt 文本 embeddings 拼接起来)通过交叉注意力的形式注入到 UNet 的生图过程中。

在这里插入图片描述

总结

Story Diffusion 第一阶段的 batch 内 KV 共享来实现图片彼此之间的交互,进而保证主题一致性。第二阶段先提取首尾帧特征并插值,处理后作为条件注入到生图过程中。

第一阶段的 KV 共享的方式感觉不如 ConsiStory 的方式精妙,但是 ConsiStory 是为了背景的多样性选择了仅在主题区域内进行 KV 共享,Story Diffusion 的随机选图全局共享的方式,背景一致性也得到了一定保证,对后续的插帧视频生成更友好一些。还有个问题就是第二阶段为啥要用 CLIP 语义特征,以图 3 为例,首尾两帧的语义特征应该是非常接近的(比如 “一个人走在马路上”),似乎用纹理特征更合理一些?

  • 9
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
"noisytwins: class-consistent and diverse lmage generation through stylegans" 是关于通过 StyleGANs 实现类别一致和多样化图像生成的研究。 StyleGAN 是一种生成对抗网络 (GAN) 的变种,用于生成逼真的图像。它通过学习图像的潜在空间表示来生成图像,其中每个点都对应一个唯一的图像。在这项研究中,noisytwins 提出了一种改进的 StyleGAN 模型,旨在生成类别一致且具有多样性的图像。 传统的 StyleGAN 模型通常只能生成与训练数据集类别相似的图像,而无法产生跨类别的多样性。对于一个类别,它通常只能生成该类别中的某一个具体样式的图像。然而,noisytwins 通过引入噪音向量,并通过控制这些向量的方式,将该模型扩展至能够在一个类别内生成多种样式的图像。 通过这种方式,noisytwins 的模型能够生成以同一类别为主题的图像,同时在样式上具有多样性。例如,如果我们以猫为类别,传统的 StyleGAN 模型只能生成某一种具体颜色和纹理的猫图像,而 noisytwins 的模型可以生成多种颜色和纹理的猫图像。 这项研究的意义在于扩展了现有的图像生成技术的应用范围。通过实现类别一致且具有多样性的图像生成,noisytwins 的模型可以在许多领域中有重要的应用,如计算机游戏开发、虚拟现实技术以及艺术创作等。 总之,"noisytwins: class-consistent and diverse lmage generation through stylegans" 是一篇关于利用改进的 StyleGANs 实现具有类别一致性和多样性的图像生成的研究,该研究扩展了现有的图像生成技术,并在多个领域中有广泛的应用潜力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值