每日最新AIGC进展(59):谷歌提出关键帧插值算法、谷歌研究院提出用实时游戏画面生成算法、中国科学院大学提出复杂场景图像生成算法

Diffusion Models专栏文章汇总:入门与实战

Generative Inbetweening: Adapting Image-to-Video Models for Keyframe Interpolation

本研究提出了一种新颖的关键帧插值方法,旨在生成符合自然运动轨迹的连续视频片段。我们适应了已经训练好的图像到视频扩散模型,使其新模型能够在两个输入关键帧之间插值,从而输出一段流畅的视频。该方法的关键在于,充分利用现有模型已学到的运动统计信息,而无需从零开始进行细致的训练。我们的工作展示了如何将一个从单个输入图像生成前向运动视频的模型,通过精简的微调技术,转化为能够生成反向运动视频的版本。与传统方法相比,这种方法在生成合乎逻辑的运动视频方面实现了显著的性能提升,为图像到视频生成领域的研究开辟了新的方向。

<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉迷单车的追风少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值