logloss与AUC的区别

AUC与Logloss:评估指标的差异与影响
本文探讨了AUC和Logloss两种机器学习评估指标的区别。AUC主要关注正样本的排序能力,而Logloss更侧重于预测的准确性。当预测值乘以一个常数时,AUC保持不变,但Logloss会发生变化。理解这些指标对于优化模型性能至关重要。
部署运行你感兴趣的模型镜像

AUC只在乎把正样本排到前面的能力,logloss更加注重评估的准确性,评估的方面不一样。

如果给预测值乘以一个倍数,则AUC不会变,但是logloss会变。

您可能感兴趣的与本文相关的镜像

GPT-oss:20b

GPT-oss:20b

图文对话
Gpt-oss

GPT OSS 是OpenAI 推出的重量级开放模型,面向强推理、智能体任务以及多样化开发场景

[0] validation_0-logloss:0.70180 [1] validation_0-logloss:0.70666 [2] validation_0-logloss:0.71372 [3] validation_0-logloss:0.72277 [4] validation_0-logloss:0.73172 [5] validation_0-logloss:0.74208 [6] validation_0-logloss:0.75198 [7] validation_0-logloss:0.75888 [8] validation_0-logloss:0.77215 [9] validation_0-logloss:0.77946 [10] validation_0-logloss:0.79158 [11] validation_0-logloss:0.79808 [12] validation_0-logloss:0.80518 [13] validation_0-logloss:0.81578 [14] validation_0-logloss:0.82266 [15] validation_0-logloss:0.83331 [16] validation_0-logloss:0.84248 [17] validation_0-logloss:0.84952 [18] validation_0-logloss:0.86082 [19] validation_0-logloss:0.86910 [20] validation_0-logloss:0.87761 [21] validation_0-logloss:0.88241 [22] validation_0-logloss:0.88975 [23] validation_0-logloss:0.89776 [24] validation_0-logloss:0.90653 [25] validation_0-logloss:0.90639 RFECV 最终选择的特征数量: 4 [0] validation_0-logloss:0.70496 [1] validation_0-logloss:0.70301 [2] validation_0-logloss:0.70210 [3] validation_0-logloss:0.70213 [4] validation_0-logloss:0.70298 [5] validation_0-logloss:0.70457 [6] validation_0-logloss:0.70681 [7] validation_0-logloss:0.70964 [8] validation_0-logloss:0.71451 [9] validation_0-logloss:0.71828 [10] validation_0-logloss:0.72382 [11] validation_0-logloss:0.72761 [12] validation_0-logloss:0.73308 [13] validation_0-logloss:0.73939 [14] validation_0-logloss:0.74075 [15] validation_0-logloss:0.74238 [16] validation_0-logloss:0.74743 [17] validation_0-logloss:0.74855 [18] validation_0-logloss:0.75567 [19] validation_0-logloss:0.75716 [20] validation_0-logloss:0.76286 [21] validation_0-logloss:0.76470 [22] validation_0-logloss:0.77041 [23] validation_0-logloss:0.77762 [24] validation_0-logloss:0.78506 [25] validation_0-logloss:0.78729 [26] validation_0-logloss:0.79494 XGBoost 参数: {'objective': 'binary:logistic', 'base_score': None, 'booster': 'gbtree', 'callbacks': None, 'colsample_bylevel': 1, 'colsample_bynode': None, 'colsample_bytree': 1, 'device': None, 'early_stopping_rounds': 25, 'enable_categorical': False, 'eval_metric': 'logloss', 'feature_types': None, 'gamma': 0, 'grow_policy': None, 'importance_type': None, 'interaction_constraints': None, 'learning_rate': 0.05, 'max_bin': None, 'max_cat_threshold': None, 'max_cat_to_onehot': None, 'max_delta_step': None, 'max_depth': 5, 'max_leaves': None, 'min_child_weight': None, 'missing': nan, 'monotone_constraints': None, 'multi_strategy': None, 'n_estimators': 2000, 'n_jobs': -1, 'num_parallel_tree': None, 'random_state': 42, 'reg_alpha': None, 'reg_lambda': 1, 'sampling_method': None, 'scale_pos_weight': 1.2, 'subsample': 1, 'tree_method': 'auto', 'validate_parameters': None, 'verbosity': None, 'alpha': 0} XGBoost 平均 accuracy: 0.46 XGBoost 平均 precision: 0.46 XGBoost 平均 recall: 1.00 XGBoost 平均 F1 score: 0.63 XGBoost 平均 AUC score: 0.59 综合混淆矩阵: [[ 0 72] [ 0 61]] 测试集 accuracy: 0.45 测试集 precision: 0.45 测试集 recall: 1.00 测试集 F1 score: 0.62 测试集 AUC score: 0.44 测试集混淆矩阵: [[ 0 32] [ 0 26]] Click to add a cell.
最新发布
03-08
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值