AUC只在乎把正样本排到前面的能力,logloss更加注重评估的准确性,评估的方面不一样。
如果给预测值乘以一个倍数,则AUC不会变,但是logloss会变。
AUC与Logloss:评估指标的差异与影响
本文探讨了AUC和Logloss两种机器学习评估指标的区别。AUC主要关注正样本的排序能力,而Logloss更侧重于预测的准确性。当预测值乘以一个常数时,AUC保持不变,但Logloss会发生变化。理解这些指标对于优化模型性能至关重要。
AUC只在乎把正样本排到前面的能力,logloss更加注重评估的准确性,评估的方面不一样。
如果给预测值乘以一个倍数,则AUC不会变,但是logloss会变。
您可能感兴趣的与本文相关的镜像
GPT-oss:20b
GPT OSS 是OpenAI 推出的重量级开放模型,面向强推理、智能体任务以及多样化开发场景
3407
1万+

被折叠的 条评论
为什么被折叠?