零基础入门金融风控-贷款违约预测之TASK1_赛题理解

本文介绍了金融风控中的贷款违约预测任务,通过理解赛题数据概况,包括47列变量信息,重点关注借款人的贷款、信贷、个人资产、负债和征信数据。评价模型效果采用AUC指标,解释了AUC的计算原理和优势。此外,还提及评分卡在贷前、贷中、贷后的重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

赛题以预测用户贷款是否违约为任务,根据借款人的数据信息预测其违约概率,提交结果为每个测试样本是1的概率。评价方法为AUC评估模型效果(越大越好)。

赛题链接:https://tianchi.aliyun.com/competition/entrance/531830/information

1、数据概况

数据包含47列变量信息,其中15列为匿名变量,总数据量超过120w,为了保证比赛的公平性,将从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。

针对现有的借款人未匿名数据信息,初步理解主要包括以下几个方面的信息:现有贷款基本信息、信贷额度相关信息、个人基本信息、个人资产负债信息、外部征信数据等。我们将利用这些数据来衡量借款人的偿还能力和还款意愿,预测违约概率。
在这里插入图片描述

2、评价标准——AUC

针对二分类问题,
TP:代表实际是正样本,预测成正样本的样本数。
FN:代表实际是正样本,预测成负样本的样本数。
TN:代表实际是负样本,预测成负样本的样本数。
FP:代表实际是负样本,预测成正样本的样本数。
设定X轴为假正率(FPR),即FP/(FP+TN),表示负样本中预测错了(预测成了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值