auc 和loss_AUC 理解

AUC是衡量二分类模型性能的重要指标,表示ROC曲线下的面积。AUC值越高,分类器性能越好。相较于accuracy,AUC和logloss更能反映模型对概率预测的质量,不受类别不平衡影响。AUC可以通过排序正负样本概率来计算,且在训练时可作为损失函数使用。在Python中,可以使用sklearn库计算AUC。
摘要由CSDN通过智能技术生成

AUC(Area under curve)是机器学习常用的二分类评测手段,直接含义是ROC曲线下的面积, 对于二分类模型,还有很多其他评价指标,比如 logloss,accuracy,precision。如果你经常关注数据挖掘比赛,比如 kaggle,那你会发现 AUC 和 logloss 基本是最常见的模型评价指标。

从AUC 判断分类器(预测模型)优劣的标准:

AUC = 1,是完美分类器;

AUC = [0.85, 0.95], 效果很好;

AUC = [0.7, 0.85], 效果一般;

AUC = [0.5, 0.7], 效果较低,但用于预测股票已经很不错了;

AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值;

AUC < 0.5,比随机猜测还差。

为什么 AUC 和 logloss 比 accuracy 更常用呢?

因为很多机器学习的模型对分类问题的预测结果都是概率,如果要计算 accuracy,需要先把概率转化成类别,这就需要手动设置一个阈值,如果对一个样本的预测概率高于这个预测,就把这个样本放进一个类别里面,低于这个阈值,放进另一个类别里面。

所以这个阈值很大程度上影响了 accuracy 的计算。使用 AUC 或者 logloss 可以避免把预测概率转换成类别。

如何计算

ROC曲线下面积:

横坐标正是 FPR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值