(系列笔记)29.深度学习(下)

本文探讨了深度学习的愿景,如自动化特征工程和调参,但指出现实中仍需人工网络结构设计和特征预处理。深度学习在语音、图像和自然语言处理等领域有广泛应用,尤其是语音识别和人脸识别。然而,它对数据和计算资源的需求高,理论基础薄弱,缺乏常识理解能力。深度学习的重要资源包括代表人物、论文、学术会议和学习资料,如Yann LeCun、Geoffrey Hinton和Yoshua Bengio的工作,以及经典论文和深度学习框架Tensorflow和PyTorch等。
摘要由CSDN通过智能技术生成

深度学习的愿景、问题、应用和资料

系列笔记因个人原因部分未完成,近期会尽快完成,将整体呈现出来的。

深度学习的愿景

和机器学习相比,深度学习的好处非常明显,或者说“看起来”非常明显——用上深度学习,就不需要特征工程和调参啦!

因为本课的主旨是讲解统计学习模型的原理,所以很少涉及特征工程,也没有专门讲过在实际应用中的模型调参。

自己动过手的同学想必知道,在实践中,模型、算法都是工具,支持库封装好了,直接调用对应接口就可以。最难的,恰恰是调参(超参数)和特征工程。

注意:特征工程指根据领域知识生成样本特征的过程,一般包括特征选择、特征获取、特征处理等步骤。

在狭义的机器学习领域(统计学习模型),特征工程以手工为主。现实的样本属性可能有几百几千(甚至更多)个,要从里面选出最具代表性的一部分作为特征,主要依据领域知识和既往经验,其他的工程性方法(降维等)只是起辅助作用。

而领域知识和经验与具体业务紧密相关,恰恰是大多数程序员不熟悉的。这就导致了在实践中总是存在着无法完全释放样本数据潜力的问题。

而调参,在超参数稍多(比如多于三个)以后,以何种策略使几种超参数组合达到最佳,则基本上可以算是一门艺术了。

当深度学习出现后,这两件让机器学习工程师头疼的任务,看起来好像消失了:

  • 首先,NN 只有网络结构没有超参数,不需要调参;

  • 其次,NN 训练的结果就是获得各个神经元的权值,因此也可以说 NN 具备了自动察觉特征重要程度的机制,可以自动完成特征筛选,不再需要特征工程啦!

深度学习的现实

可惜,现实总是骨感的。

深度学习虽然不需要调参但是需要自己搭建网络。用什么类型的网络(或者网络组合),一共有几层,每层有几个/什么类型的单元,如何连接……这些都要用户自己来创建和指定。

虽然具体到某个实际问题,可能有大量的论文提供学术研究出的解决方案,也有很多经典网络,可以直接拿来使用。但是,重现他人的学术研究成果也是一件蛮复杂的工作。

毕竟,在现阶段的国内企业中,能够迅速在工业应用中实现前沿学术成果的人,就已经被尊为算法科学家了(欲了解“算法科学家”,请参见:附录)。

说到特征选取,虽然理论上 NN 可以接受所有的特征,然后自动选出重要的“委以重任”。也确有将 Million 甚至 Billion 量级的特征输入到 NN 的尝试。但最起码,特征的数字化还是要人类来完成的。

更何况,NN 筛选特征的能力同样也受限于它自身的结构。

另外,如果有具备雄厚领域知识和经验的专家人工筛选出特征,则不仅能够提升 NN 模型的效果,还可以大量节约各种(运算、数据乃至人力)资源。

故而,在实际的工作中,NN 的特征选取也未必全部是自动进行,有时也会加入人工干预。

机器学习和深度学习

下表横向比较了机器学习和深度学习:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值