(系列笔记)15.HMM系列(1)

HMM——定义和假设

概念讲解

概率模型(Probabilistic Model)

所谓概率模型,顾名思义,就是将学习任务归结于计算变量的概率分布的模型。

概率模型非常重要。在生活中,我们经常会根据一些已经观察到的现象来推测和估计未知的东西——这种需求,恰恰是概率模型的推断(Inference)行为所做的事情。

推断(Inference)的本质是:利用可观测变量,来推测未知变量的条件分布。

我们下面要讲的隐马尔可夫模型(HMM)和条件随机场(CRF)都是概率模型,之前讲过的朴素贝叶斯和逻辑回归也是概率模型。

生成模型和判别模型

概率模型可以分为生成模型(Generative Model)判别模型(Discriminative Model)

我们将可观测变量的集合命名为 O O O,我们感兴趣的未知变量的集合命名为 Y Y Y
生成模型学习出来的是 O O O Y Y Y的联合概率分布 P ( O , Y ) P(O,Y) P(O,Y),而判别模型学校的是条件概率分布 P ( Y ∣ O ) P(Y|O) P(YO),前面提到的朴素贝叶斯模型是生成模型,而逻辑回归是判别模型。

对于某一个给定的观察值,运用条件概率 P ( Y ∣ O ) P(Y|O) P(YO)很容易求出它对于不同 Y Y Y的取值。那么当遇到分类问题时,直接就可以运用判别模型根据给定 O O O对于哪一个 Y Y Y值的条件概率最大,来判断该观测样本该属于的类别。

而生成模型也可以用来给观测样本分类,通过运用贝叶斯法则,将生成模型转化为判别模型,这样会比较麻烦。所以在分类问题上,判别模型一般更具优势,不过生成模型自有其专门的用途。本讲HMM就是一种生成模型。

概率图模型(Probabilistic Graphical Model)

概率图模型:是一种以图(Graph)为表示工具,来表达变量间相关关系的概率模型。这里说的图:一种由节点和连接节点的边组成的数据结构。

在概率图模型中,一般用节点来表示一个或者一组随机变量,而节点之间的边则表示两个(组)变量之间的概率相关关系。

边可以是有向(有方向)的,也可以是无向的。概率图模型大致可以分为:

  • 有向图模型(贝叶斯网络):用有向无环图表示变量间的依赖关系;
  • 无向图模型(马尔可夫网):用无向图表示变量间的相关关系。

HMM 就是贝叶斯网络的一种——虽然它的名字里有和“马尔可夫网”一样的“马尔可夫”。

对变量序列建模的贝叶斯网络又叫做动态贝叶斯网络。HMM 就是最简单的动态贝叶斯网络。

马尔可夫链,马尔可夫随机场和条件随机场

马尔科夫链(Markov Chain):一个随机过程模型,它表述了一些列可能的事件,在这个系列当中每一个事件的概率仅依赖于 前一个事件。
在这里插入图片描述
上图就是一个非常简单的马尔科夫链,两个节点分别表示晴天和雨天,几条边表示节点之间的转移概率。
一个晴天之后,0.9的可能又是一个晴天,0.1的可能是一个雨天;而一个雨天之后,0.5的可能是晴天,0.5的可能是另外一个雨天。

假设这是某个地区的天气预报模型(只有晴天和雨天两种天气),则明天天气的概率,只和今天的天气状况有关,和前提以及更早没有关系,那么我们只要知道今天的天气,就可以推测明天是晴是雨的可能性了。

隐马尔可夫模型(Hidden Markov Model,HMM)

HMM定义

HMM 是一个关于时序的概率模型,它的变量分为两组:

  • 状态变量{ s 1 , s 2 , . . . , s T s_1,s_2,...,s_T s1,s2,...,sT},其中 s t ∈ S s_t \in S stS表示t时刻的系统状态;
  • 观测变量{ o 1 , o 2 , . . . , o T o_1,o_2,...,o_T
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值