论文解读:DeepZ:一种用于Z-DNA预测的深度学习方法

文章介绍了一种名为DeepZ的深度学习方法,用于预测DNA序列中的Z-DNA结构。DeepZ结合了CNN和RNN模型,利用ChIP-seq数据和多种组学信息。通过稀疏向量压缩处理大数据,解决了内存需求问题。模型训练采用了五折交叉验证策略,确保预测准确性。同时,文章探讨了特征重要性分析,以理解模型的决策基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标题 DeepZ: A Deep Learning Approach for Z-DNA Prediction.

DOI 10.1007/978-1-0716-3084-6_15

期刊 Methods in molecular biology

作者 Nazar Beknazarov; Maria Poptsova

出版日期 2023-01-01

Github:https://github.com/Nazar1997/Sparse-vector

网址 https://doi.org/10.1007/978-1-0716-3084-6_15

摘要

在这里,我们描述了一种使用深度学习神经网络(如CNN和RNN)从DNA序列中聚合信息的方法;核苷酸的物理、化学和结构特性;组蛋白修饰、甲基化、染色质可及性和转录因子结合位点的组学数据以及其他可用NGS实验的数据。我们解释了如何使用训练的模型对Z-DNA区域进行全基因组注释和特征重要性分析,以确定功能Z-DNA区域的关键决定因素。

数据

        输入数据取自ChIP-seq实验,通常以区间的形式表示(通常以.dad格式)。在我们描述DeepZ模型的原始研究[10]中,我们使用了两个Z-DNA数据集:一个来自ChIP-seq实验,报告了391个Z-DNA区域[4],第二个数据集由Wu等人[11]和Kouzine等人[12]的数据组成。应该从ENCODE黑名单区域中清除数据集[13]。通常,对于深度学习方法的使用,感兴趣的区域是居中的,并调整到相同的宽度,并被视为正类的对象。在我们的方法中,由于正类中的项目数量较少,我们提出了一种不同的方法。代替间隔,我们考虑核苷酸的水平,其中整个基因组由布尔阵列表示,其中1被分配给Z-DNA区域中的核苷酸࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值