ToxinPred2: an improved method for predicting toxicity of proteins
期刊:Briefings in Bioinformatics
中科院分区:2区
影像因子:13.994
web网站:https://webs.iiitd.edu.in/raghava/ toxinpred2/
Github:https://github.com/raghavagps/toxinpred2
DOI:https://doi.org/10.1093/bib/bbac174
发布日期:2022年5月20日
目录
摘要
蛋白质/肽已证明是各种疾病有希望的治疗剂。但是,毒性是基于蛋白质/肽的治疗的障碍之一。当前的研究描述了一种基于Web的工具ToxinPred2,用于预测蛋白质的毒性。这是用于预测肽和小蛋白质的毒性的毒素蛋白质的更新。该方法已在瑞士普罗特(Swissprot)最近发布的三个数据集上进行了培训,测试和评估。为了提供公正的评估,我们对80%的数据进行了内部验证,其余20%的数据进行了外部验证。我们已经实施了以下技术来预测蛋白质毒性。 (i)基于本地局部搜索工具的基本相似性,(ii)主题出现以及基于类识别的主题搜索和(iii)预测模型。相似性和基于基序的技术实现了正确预测的高可能性,其灵敏度/覆盖范围差,而基于机器学习技术的模型则以相当高的精度实现了平衡敏感性和特异性。最后,我们开发了一种混合方法,该方法结合了所有三种方法,混合的方法就是两种软件进行蛋白质预测然后再结合RF分类器并在0.99左右的AUC,MCC在验证数据集上为0.91,结合了AAC的特征提取采用RF机器学习的方法ACC达到了0.8637.
1. 背景
蛋白质和肽是自然存在的分子,在体内发挥各种功能和过程,对于维持细胞机制至关重要[1]。它们的异常活性参与了各种疾病,包括癌症,神经退行性疾病和糖尿病[2]。质/肽的药物发现和发育中存在某些主要问题,例如毒性,免疫原性和稳定性。由于这个原因,评估蛋白质/肽的毒性特性对于将其作为药物靶标是非常必要的。毒素是对身体产生有害作用的潜物质,存在于自然植物中也可以由微生物产生,如果由动物产生致命的毒性比如蝎毒蛇毒,大致的情况一致。
图1 相关生物的毒性