证明二类分类问题的泛化误差上界

泛化误差上界:

对二分类问题,当假设空间是有限个函数的集合F={f1,f2,f3,...,fn}时,对任意一个函数f\epsilon F,至少以概率1-\delta,以下不等式成立:

R(f)\leq \hat{R}(f)+\varepsilon (d,N,\delta)

其中,\varepsilon (d,N,\delta )=\sqrt{1/2N(logd+log(1/\delta ))}

不等式右端第一项为训练误差,训练误差越小,泛化误差就越小

第二项为N的单调递减函数,当N趋于无穷时其趋于0,且假设空间包含的函数越多,其值越大

以下为证明过程:

首先,因为证明过程要用到Hoeffding不等式,叙述如下:

S_{n}=\sum_{i=1}^{n}X_{i}是独立随机变量X1,X2,...,Xn之和,X_{i}\epsilon [ai,bi],则对任意t>0,以下不等式成立:

P(S_{n}-ES_{n}\geq t)\leq exp(\frac{-2t^{2}}{\sum_{i=1}^{n}(bi-ai)^{2} })

P(ES_{n}-S_{n}\geq t)\leq exp(\frac{-2t^{2}}{\sum_{i=1}^{n}(bi-ai)^{2} })

现有,对任意f\epsilon F\hat{R}(f)是N个独立随机变量L(Y,f(X))的样本均值,R(f)是随机变量L(Y,f(X))的期望值,损失函数取值于区间[0,1],即对所有i,[ai,bi]=[0,1]则有:

S_{n}=\sum_{i=1}^{N}L(Y_{i},f(X_{i}))=NR(f)

E(S_{n})=E(\sum_{i=1}^{N}L(Y_{i},f(X_{i})))=\sum_{i=1}^{N}(E(L(Y_{i},f(X_{i})))=\sum_{i=1}^{N}\hat{R}(f)=N\hat{R}(f)

因为P(NR(f)-N\hat{R}(f)\geq N\varepsilon )=P(R(f)-\hat{R}(f)\geq \varepsilon )

因此,由Hoeffding不等式得:

P(R(f)-\hat{R}(f)\geq \varepsilon ) \leq exp(-2(N\varepsilon )^{2}/N)=exp(-2N\varepsilon ^{2})

因为,假设空间是一个有限集合,则有:

P(R(f)-\hat{R}(f)\geq \varepsilon )\leq dexp(-2N \varepsilon ^{2})

等价于:

P(R(f)-\hat{R}(f)\leq \varepsilon )\geq 1-dexp(-2N \varepsilon ^{2})

dexp(-2N \varepsilon ^{2})= \delta,则至少以概率1-\deltaR(f)< \hat{R}(f)+ \varepsilon成立

因此,训练误差小的模型,泛化误差也会小

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值