算法与数据结构(十一):动态规划算法(Floyd算法)(C++实现)

算法与数据结构(十一):动态规划算法(Floyd算法)(C++实现)

动态规划问题

动态规划法主要适用于最优化问题的求解。这类问题会有多种可能的解,每个解都有一个值,动态规划就是找出其中最优(最大或者最小)值的解。若存在若干个最优解的话,只取其中一个。

多源最短路径问题

多源最短路径问题就是指对一个给定的非负有向网图,求出其中任意两个节点之间的最短路径。求解这一问题比较著名的有两种方法:其一是图中每个节点作为源点共调用n次Dijkstra算法;其二是采用Floyd算法。这两种算法的时间复杂度均为O(n3)。

主函数
/*多源最短路径问题的动态规划Folyd法实现*/
#include<iostream>
using namespace std;
const int INF = 100000;
const int N = 11;
int n = 10, map[N][N], dist[N][N][N];
void init()
{
	int i, j;
	for (i = 1; i <= n; i++)
		for (j = 1; j <= n; j++)
			map[i][j] = (i == j) ? 0 : INF;
	map[1][2] = 2, map[1][4] = 20, map[2][5] = 1;
	map[3][1] = 3, map[4][3] = 8, map[4][6] = 6;
	map[4][7] = 4, map[5][3] = 7, map[5][8] = 3;
	map[6][3] = 1, map[7][8] = 1, map[8][6] = 2;
	map[8][2] = 2, map[9][7] = 2, map[10][9] = 1;
}
/*
*dist(k)[i][j]的含义允许中间节点的最大序号为k时从Vi到Vj的最短路径长度
*dist(n-1)[i][j]就是Vi到Vj的最短路径长度
*/
void floyd_dp()
{
	int i, j, k;
	for (i = 1; i <= n; i++)
		for (j = 1; j <= n; j++)
			dist[i][j][0] = map[i][j];
	for (k = 1; k <=n; k++)
		for (i = 1; i <= n; i++)
			for (j = 1; j <= n; j++)
			{
				dist[i][j][k] = dist[i][j][k - 1];
				if (dist[i][k][k - 1] + dist[k][j][k - 1] < dist[i][j][k])
					dist[i][j][k] = dist[i][k][k - 1] + dist[k][j][k - 1];
			}
}
int main()
{
	int k, u, v;
	init();
	floyd_dp();
	cout << "请输入任意节点的名称,比如:1 3" << endl;
	while (cin >> u >> v, u || v)
	{
		for (k = 0; k <= n; k++)
		{
			if (dist[u][v][k] == INF) cout << "+oo" << endl;
			else cout << dist[u][v][k] << endl;
		}
	}
	return 0;
}

dist(k)[i][j]的含义允许中间节点的最大序号为k时从Vi到Vj的最短路径长度,dist(n-1)[i][j]就是Vi到Vj的最短路径长度。程序运行结果如下图所示:
在这里插入图片描述

参考:算法分析与设计(C++描述) 石志国、刘冀伟、姚亦飞编著
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值