深入浅出动态规划
解释:动态规划(Dynamic Programming,DP)在查找很多重叠子问题的最优解时有效,他将问题重新组合成子问题,为了避免多次解决这些子问题,他们的结果都逐渐被计算并保存,从简答的问题直到整个问题都被解决。
动态规划和其他遍历算法(广度搜索)都是将原问题拆成多个子问题然后求解,本质区别是:动态规划保存子问题的解,避免重复计算。解决动态规划的关键是找到转移方程,这样我们可以通过计算和存储子问题的解来求解最终问题。
1.基本动态规划:一维
题目一:给定 n 节台阶,每次可以走一步或走两步,求一共有多少种方式可以走完这些台阶。
例如:输入是一个数字,表示台阶数量;输出是爬台阶的总方式。
这是十分经典的斐波那契数列题。定义一个数组 dp,dp[i] 表示走到第 i 阶的方法数。因为
我们每次可以走一步或者两步,所以第 i 阶可以从第 i-1 或 i-2 阶到达。换句话说,走到第 i 阶的
方法数即为走到第 i-1 阶的方法数加上走到第 i-2 阶的方法数。这样我们就得到了状态转移方程
dp[i] = dp[i-1] + dp[i-2]。注意边界条件的处理。
int climbStairs(int n)
{
if(n<=2) return n;
vector<int>dp(n+1,1);
for(int i=2;i<=n;++i)
{
dp[i]=dp[i-1]+dp[i-1];
}
return dpp[n];
}
进一步的,我们可以对动态规划进行空间压缩。因为 dp[i] 只与 dp[i-1] 和 dp[i-2] 有关,因此
可以只用两个变量来存储 dp[i-1] 和 dp[i-2],使得原来的 O(n) 空间复杂度优化为 O(1) 复杂度。
int climbStairs(int n)
{
if(n<=2) return n;
int pre2=1,pre1=2,cur;
for(int i=2;i<n;++i)
{
cur=pre1+pre2;
pre2=pre1;
pre1=cur;
}
return cur;
}
题目二:
int rob(vector<int>&nums)
{
if(nums.empty()) return 0;
int n=nums.size();
if(n==1) return nums[0];
int pre2=0,pre1=0,curr;
for(int i=0;i<n;i++)
{
cur=max(pre2+nums[i],pre1);
pre2=pre1;
pre1=cur;
}
return cur;
}
题目三:
int numberOfAirthmeticSlices(vector<int>&nums)
{
int n=nums.size();
if(n<3) return 0;
vector<int>dp(n,0);
for(int i=2;i<n;++i)
{
if(nums[i]-nums[i-1]==nums[i-1]-nums[n-2])
{
dp[i]=dp[i-1]+1;
}
}
return accumulate(dp.begin(),dp.end(),0);
}
2.基本动态规划:二维
题目一:给定一个 m × n 大小的非负整数矩阵,求从左上角开始到右下角结束的、经过的数字的和最
小的路径。每次只能向右或者向下移动。
我们可以定义一个同样是二维的 dp 数组,其中 dp[i][j] 表示从左上角开始到 (i, j) 位置的最
优路径的数字和。因为每次只能向下或者向右移动,我们可以很容易得到状态转移方程
dp[i][j] =min(dp[i-1][j], dp[i][j-1]) + grid[i][j],其中 grid 表示原数组。
int minPathSum(vector<vector<int>>&grid)
{
int m=grid.size();
int n=grid[0].size();
vector<vector<int>>dp(m,vector<int>(n,0));
for(int i=0;i<m;++i)
{
for(int j=0;j<n;++j)
{
if(i==0&&j==0){
dp[i][j]=grid[i][j];
}
else if(i==0)
{
dp[i][j]=dp[i][j-1]+grid[i][j];
}
else if(j==0)
{
dp[i][j]=dp[i-1][j]+grid[i][j];
}
else
{
dp[i][j]=min(dp[i-1][j],dp[i][j-1]+grid[i][j];
}
}
}
return dp[m-1][n-1];
}
题目二:
我们从左上到右下进行一次动态搜索,再从右下到左上进行一次动态搜索。两次动态搜索即可完成四个方向上的查找。
vector<vector<int>>updateMatrix(vector<vector<int>>&matrix)
{
if(matrix.empty()) return{};
int n=matrix.size(),m=matix[0].size();
vector<vector<int>>dp(n,vector<int>(m,INT_MAX-1));
for(int i=0;i<n;++i)
{
for(int j=0;j<m;++j)
{
if(matrix[i][j]==0)
{
dp[i][j]=0;
}
else
{
if(j>0){
dp[i][j]=min(dp[i][j],dp[i][j-1]+1);
}
if(i>0){
dp[i][j]=min(dp[i][j],dp[i-1][j]]+1);
}
}
}
}
for(int i=n-1;i>=0;--i)
{
for(int j=m-1;j>=0;--j)
{
if(matrix[i][j]!=0)
{
if(j<m-1)
{
dp[i][j]=min(dp[i][j],dp[i][j]+1);
}
if(i<n-1)
{
dp[i][j]=min(dp[i][j],dp[i+1][j]+1);
}
}
}
}
return dp;
}
题目三:
对于在矩阵内搜索正方形或长方形的题型,一种常见的做法是定义一个二维 dp 数组,其中
dp[i][j] 表示满足题目条件的、以 (i, j) 为右下角的正方形或者长方形的属性。对于本题,则表示
以 (i, j) 为右下角的全由 1 构成的最大正方形面积。如果当前位置是 0,那么 dp[i][j] 即为 0;如果
当前位置是 1,我们假设 dp[i][j] = k^2,其充分条件为 dp[i-1][j-1]、dp[i][j-1] 和 dp[i-1][j] 的值必须
都不小于 (k − 1)^2,否则 (i, j) 位置不可以构成一个边长为 k 的正方形。同理,如果这三个值中的
的最小值为 k − 1,则 (i, j) 位置一定且最大可以构成一个边长为 k 的正方形。
int maximalSquare(vector<vector<char>>&matrix)
{
if(matrix.empty()||matrix[0].empty())
{
return 0;
}
int m=matrix.size(),n=matrix[0].size(),max_side=0;
vector<vector<int>>dp(m+1,vector<int>(n+1,0);
for(int i=1;i<=m;++i)
{
for(int j=1;j<=n;++j)
{
if(matrix[i-1][j-1]=='1')
dp[i][j]=min(dp[i-1][j-1],min(dp[i][j-1],dp[i-1][j]))+1;
}
max_side=max(max_side,dp[i][j]);
}
}
return max_side*max_side;
}