canny算法(2)——图像梯度的计算(sobel算子)

本文介绍了Canny边缘检测算法中的图像梯度计算,通过数学定义解释了梯度的概念,并详细说明了Sobel算子在求取图像梯度过程中的应用。使用Sobel算子对图像进行卷积,以获取像素点的x和y方向梯度,进而计算梯度幅值和方向。最后,文章提供了在MATLAB中实现代码的简要说明。
摘要由CSDN通过智能技术生成
图像梯度的提出

对图像进行过高斯平滑滤波后,图像的部分高斯噪声会降低,锐度也会减弱,但是此时图像的边缘分解不太明显,变化的灰度变化不太强烈,不太容易捕捉。因此,为了去定义这种边缘灰度变化的大小,提出图像梯度,用梯度的大小去表示边缘灰度变换的大小。

梯度的数学定义

梯度即是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。即导数(梯度),那么对于图像来说,把图像当作函数 f ( x , y ) f(x,y) f(x,y),用微分去表示图像的变化率。由于图象是二维函数,故求偏导。

soble算子

s x = [ 1 0 − 1 2 0 − 2 1 0 − 1 ] , s y = [ 1 2 1 0 0 0 − 1 − 2 − 1 ] s_{x}=\begin{bmatrix} 1&0&-1\\ 2&0&-2\\ 1&0&-1\\ \end{bmatrix},s_{y}=\begin{bmatrix} 1&2&1\\ 0&0&0\\ -1&-2&-1\\ \end{bmatrix} sx=121000121,sy=101202101

图像梯度的计算

由于图像是离散的,即 f ( x , y ) f(x,y) f(x,y)是一个离散函数,故计算梯度时,变化的最小单位为1。对一幅图像,有 x 方 向 , y 方 向 x方向,y方向 xy

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值