图像梯度的提出
对图像进行过高斯平滑滤波后,图像的部分高斯噪声会降低,锐度也会减弱,但是此时图像的边缘分解不太明显,变化的灰度变化不太强烈,不太容易捕捉。因此,为了去定义这种边缘灰度变化的大小,提出图像梯度,用梯度的大小去表示边缘灰度变换的大小。
梯度的数学定义
梯度即是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。即导数(梯度),那么对于图像来说,把图像当作函数 f ( x , y ) f(x,y) f(x,y),用微分去表示图像的变化率。由于图象是二维函数,故求偏导。
soble算子
s x = [ 1 0 − 1 2 0 − 2 1 0 − 1 ] , s y = [ 1 2 1 0 0 0 − 1 − 2 − 1 ] s_{x}=\begin{bmatrix} 1&0&-1\\ 2&0&-2\\ 1&0&-1\\ \end{bmatrix},s_{y}=\begin{bmatrix} 1&2&1\\ 0&0&0\\ -1&-2&-1\\ \end{bmatrix} sx=⎣⎡121000−1−2−1⎦⎤,sy=⎣⎡10−120−210−1⎦⎤
图像梯度的计算
由于图像是离散的,即 f ( x , y ) f(x,y) f(x,y)是一个离散函数,故计算梯度时,变化的最小单位为1。对一幅图像,有 x 方 向 , y 方 向 x方向,y方向 x方向,y方