自控原理(1)——流程图的化简及Mason公式

自控原理(1)——流程图的化简及Mason公式

等效变化的原则

对流程图的任何一部分进行变换时,应该遵循等效变换原则——变换前后系统总的传递函数应该保持不变。

3种基本变换

串联
在这里插入图片描述
ϕ ( s ) = G 1 ( s ) G 2 ( s ) \phi(s)=G_{1}(s)G_{2}(s) ϕ(s)=G1(s)G2(s)

并联
在这里插入图片描述
ϕ ( s ) = G 1 ( s ) + G 2 ( s ) \phi(s)=G_{1}(s)+G_{2}(s) ϕ(s)=G1(s)+G2(s)

反馈
在这里插入图片描述
ϕ ( s ) = G 1 ( s ) 1 ∓ G 2 ( s ) \phi(s)=\frac{G_{1}(s)}{1\mp G_{2}(s)} ϕ(s)=1G2(s)G1(s)

引出点,比较点变化

在这里插入图片描述

相关例题

例1:化简下图所示系统流程图,并求系统传递函数 ϕ ( s ) \phi(s) ϕ(s)

在这里插入图片描述
:如上图,第三个比较点前移,第二个引出点前移,得到如下图
在这里插入图片描述
在这里插入图片描述
此时,第一个方框为负反馈,第二个方框为串并联,化简得如下图
在这里插入图片描述
此时,内环为先串联,后负反馈,外环为负反馈,化简得系统传递函数为

在这里插入图片描述

梅逊(Mason)公式

梅逊(mason)公式是美国麻省理工学院S.J.Mason 于20世纪50年代提出的。借助梅逊公式,不经过任何结构变换,便可以得到系统的传递函数。极大的降低流程图化简的难度,是自动控制史上一项很具有代表的成就。

梅逊公式表达式

ϕ ( s ) = ∑ P k Δ k Δ \phi(s)=\frac{\sum{P_{k}{\Delta_{k}}}}{\Delta} ϕ(s)=ΔPkΔk
Δ \Delta Δ:特征式
Δ = 1 − ∑ L i + ∑ L i L j − ∑ L i L j L k + ⋯ \Delta=1-\sum{L_{i}}+\sum{L_{i}L_{j}}-\sum{L_{i}L_{j}L_{k}}+\cdots Δ=1L

  • 17
    点赞
  • 61
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值