自控原理(1)——流程图的化简及Mason公式
等效变化的原则
对流程图的任何一部分进行变换时,应该遵循等效变换原则——变换前后系统总的传递函数应该保持不变。
3种基本变换
串联
ϕ
(
s
)
=
G
1
(
s
)
G
2
(
s
)
\phi(s)=G_{1}(s)G_{2}(s)
ϕ(s)=G1(s)G2(s)
并联
ϕ
(
s
)
=
G
1
(
s
)
+
G
2
(
s
)
\phi(s)=G_{1}(s)+G_{2}(s)
ϕ(s)=G1(s)+G2(s)
反馈
ϕ
(
s
)
=
G
1
(
s
)
1
∓
G
2
(
s
)
\phi(s)=\frac{G_{1}(s)}{1\mp G_{2}(s)}
ϕ(s)=1∓G2(s)G1(s)
引出点,比较点变化
相关例题
例1:化简下图所示系统流程图,并求系统传递函数 ϕ ( s ) \phi(s) ϕ(s)。
解:如上图,第三个比较点前移,第二个引出点前移,得到如下图
此时,第一个方框为负反馈,第二个方框为串并联,化简得如下图
此时,内环为先串联,后负反馈,外环为负反馈,化简得系统传递函数为
梅逊(Mason)公式
梅逊(mason)公式是美国麻省理工学院S.J.Mason 于20世纪50年代提出的。借助梅逊公式,不经过任何结构变换,便可以得到系统的传递函数。极大的降低流程图化简的难度,是自动控制史上一项很具有代表的成就。
梅逊公式表达式
ϕ
(
s
)
=
∑
P
k
Δ
k
Δ
\phi(s)=\frac{\sum{P_{k}{\Delta_{k}}}}{\Delta}
ϕ(s)=Δ∑PkΔk
Δ
\Delta
Δ:特征式
Δ
=
1
−
∑
L
i
+
∑
L
i
L
j
−
∑
L
i
L
j
L
k
+
⋯
\Delta=1-\sum{L_{i}}+\sum{L_{i}L_{j}}-\sum{L_{i}L_{j}L_{k}}+\cdots
Δ=1−∑Li+∑LiLj−∑LiLjLk+⋯
∑
L
i
\sum{L_{i}}
∑Li:所有两两互不接触的回路增益之和
∑
L
i
L
j
\sum{L_{i}L_{j}}
∑LiLj:所有回路(每个单独的回路)的回路增益之和
∑
L
i
L
j
L
k
\sum{L_{i}L_{j}L_{k}}
∑LiLjLk:所有三三互不接触的回路增益之和
P
k
P_{k}
Pk:从输入节点到输出节点的第
K
K
K条前向通路的增益
Δ
k
\Delta_{k}
Δk:在
Δ
\Delta
Δ中,将与第
K
K
K条前向通路接触的回路去除后,余下的
Δ
\Delta
Δ,称作余子式
相关例题
例2:对例1用#梅逊(Mason)公式求解,得出系统传递函数
ϕ
(
s
)
\phi(s)
ϕ(s)。
解:
∑
L
i
=
−
G
1
(
s
)
G
2
(
s
)
G
3
(
s
)
−
G
1
(
s
)
G
4
(
s
)
−
G
2
(
s
)
G
3
(
s
)
H
2
(
s
)
−
G
1
(
s
)
G
2
(
s
)
H
1
(
s
)
−
G
4
(
s
)
H
2
(
s
)
\sum{L_{i}}=-G_{1}(s)G_{2}(s)G_{3}(s)-G_{1}(s)G_{4}(s)-G_{2}(s)G_{3}(s)H_{2}(s)-G_{1}(s)G_{2}(s)H_{1}(s)-G_{4}(s)H_{2}(s)
∑Li=−G1(s)G2(s)G3(s)−G1(s)G4(s)−G2(s)G3(s)H2(s)−G1(s)G2(s)H1(s)−G4(s)H2(s)
没有两个及两个以上互不接触得回环,故
Δ
=
1
+
G
1
(
s
)
G
2
(
s
)
G
3
(
s
)
+
G
1
(
s
)
G
4
(
s
)
+
G
2
(
s
)
G
3
(
s
)
H
2
(
s
)
+
G
1
(
s
)
G
2
(
s
)
H
1
(
s
)
+
G
4
(
s
)
H
2
(
s
)
\Delta=1+G_{1}(s)G_{2}(s)G_{3}(s)+G_{1}(s)G_{4}(s)+G_{2}(s)G_{3}(s)H_{2}(s)+G_{1}(s)G_{2}(s)H_{1}(s)+G_{4}(s)H_{2}(s)
Δ=1+G1(s)G2(s)G3(s)+G1(s)G4(s)+G2(s)G3(s)H2(s)+G1(s)G2(s)H1(s)+G4(s)H2(s)
前向通路
P
1
=
G
1
(
s
)
G
2
(
s
)
G
3
(
s
)
P_{1}=G_{1}(s)G_{2}(s)G_{3}(s)
P1=G1(s)G2(s)G3(s)
P
2
=
G
1
(
s
)
G
4
(
s
)
P_{2}=G_{1}(s)G_{4}(s)
P2=G1(s)G4(s)
余子式
Δ
1
=
1
\Delta_{1}=1
Δ1=1
Δ
2
=
1
\Delta_{2}=1
Δ2=1
故
ϕ
(
s
)
=
G
1
(
s
)
G
2
(
s
)
G
3
(
s
)
+
G
1
(
s
)
G
4
(
s
)
1
+
G
1
(
s
)
G
2
(
s
)
G
3
(
s
)
+
G
1
(
s
)
G
4
(
s
)
+
G
2
(
s
)
G
3
(
s
)
H
2
(
s
)
+
G
1
(
s
)
G
2
(
s
)
H
1
(
s
)
+
G
4
(
s
)
H
2
(
s
)
\phi(s)=\frac{G_{1}(s)G_{2}(s)G_{3}(s)+G_{1}(s)G_{4}(s)}{1+G_{1}(s)G_{2}(s)G_{3}(s)+G_{1}(s)G_{4}(s)+G_{2}(s)G_{3}(s)H_{2}(s)+G_{1}(s)G_{2}(s)H_{1}(s)+G_{4}(s)H_{2}(s)}
ϕ(s)=1+G1(s)G2(s)G3(s)+G1(s)G4(s)+G2(s)G3(s)H2(s)+G1(s)G2(s)H1(s)+G4(s)H2(s)G1(s)G2(s)G3(s)+G1(s)G4(s)
化简上式可得与例1一样得结果,可见,梅逊公式简单明了,并且简化了大量得计算,因此,梅逊公式可以说对系统框图的化简是必不可少的。
到此为止,自控原理(1)——流程图的化简及Mason公式的介绍已完成,如有问题,或需要探讨,请留言或联系本人。
Q
Q
:
2214564003
QQ:2214564003
QQ:2214564003
欢迎关注本人微信公众号: