自控原理(1)——流程图的化简及Mason公式

本文介绍了自控原理中的流程图化简原则和梅逊公式,通过实例详细阐述了如何利用3种基本变换进行等效变换,并应用梅逊公式直接求解系统传递函数,降低了化简复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自控原理(1)——流程图的化简及Mason公式

等效变化的原则

对流程图的任何一部分进行变换时,应该遵循等效变换原则——变换前后系统总的传递函数应该保持不变。

3种基本变换

串联
在这里插入图片描述
ϕ ( s ) = G 1 ( s ) G 2 ( s ) \phi(s)=G_{1}(s)G_{2}(s) ϕ(s)=G1(s)G2(s)

并联
在这里插入图片描述
ϕ ( s ) = G 1 ( s ) + G 2 ( s ) \phi(s)=G_{1}(s)+G_{2}(s) ϕ(s)=G1(s)+G2(s)

反馈
在这里插入图片描述
ϕ ( s ) = G 1 ( s ) 1 ∓ G 2 ( s ) \phi(s)=\frac{G_{1}(s)}{1\mp G_{2}(s)} ϕ(s)=1G2(s)G1(s)

引出点,比较点变化

在这里插入图片描述

相关例题

例1:化简下图所示系统流程图,并求系统传递函数 ϕ ( s ) \phi(s) ϕ(s)

在这里插入图片描述
:如上图,第三个比较点前移,第二个引出点前移,得到如下图
在这里插入图片描述
在这里插入图片描述
此时,第一个方框为负反馈,第二个方框为串并联,化简得如下图
在这里插入图片描述
此时,内环为先串联,后负反馈,外环为负反馈,化简得系统传递函数为

在这里插入图片描述

梅逊(Mason)公式

梅逊(mason)公式是美国麻省理工学院S.J.Mason 于20世纪50年代提出的。借助梅逊公式,不经过任何结构变换,便可以得到系统的传递函数。极大的降低流程图化简的难度,是自动控制史上一项很具有代表的成就。

梅逊公式表达式

ϕ ( s ) = ∑ P k Δ k Δ \phi(s)=\frac{\sum{P_{k}{\Delta_{k}}}}{\Delta} ϕ(s)=ΔPkΔk
Δ \Delta Δ:特征式
Δ = 1 − ∑ L i + ∑ L i L j − ∑ L i L j L k + ⋯ \Delta=1-\sum{L_{i}}+\sum{L_{i}L_{j}}-\sum{L_{i}L_{j}L_{k}}+\cdots Δ=1Li+LiLjLiLjLk+
∑ L i \sum{L_{i}} Li:所有两两互不接触的回路增益之和
∑ L i L j \sum{L_{i}L_{j}} LiLj:所有回路(每个单独的回路)的回路增益之和
∑ L i L j L k \sum{L_{i}L_{j}L_{k}} LiLjLk:所有三三互不接触的回路增益之和
P k P_{k} Pk:从输入节点到输出节点的第 K K K条前向通路的增益
Δ k \Delta_{k} Δk:在 Δ \Delta Δ中,将与第 K K K条前向通路接触的回路去除后,余下的 Δ \Delta Δ,称作余子式

相关例题

例2:对例1用#梅逊(Mason)公式求解,得出系统传递函数 ϕ ( s ) \phi(s) ϕ(s)
在这里插入图片描述
∑ L i = − G 1 ( s ) G 2 ( s ) G 3 ( s ) − G 1 ( s ) G 4 ( s ) − G 2 ( s ) G 3 ( s ) H 2 ( s ) − G 1 ( s ) G 2 ( s ) H 1 ( s ) − G 4 ( s ) H 2 ( s ) \sum{L_{i}}=-G_{1}(s)G_{2}(s)G_{3}(s)-G_{1}(s)G_{4}(s)-G_{2}(s)G_{3}(s)H_{2}(s)-G_{1}(s)G_{2}(s)H_{1}(s)-G_{4}(s)H_{2}(s) Li=G1(s)G2(s)G3(s)G1(s)G4(s)G2(s)G3(s)H2(s)G1(s)G2(s)H1(s)G4(s)H2(s)
没有两个及两个以上互不接触得回环,故
Δ = 1 + G 1 ( s ) G 2 ( s ) G 3 ( s ) + G 1 ( s ) G 4 ( s ) + G 2 ( s ) G 3 ( s ) H 2 ( s ) + G 1 ( s ) G 2 ( s ) H 1 ( s ) + G 4 ( s ) H 2 ( s ) \Delta=1+G_{1}(s)G_{2}(s)G_{3}(s)+G_{1}(s)G_{4}(s)+G_{2}(s)G_{3}(s)H_{2}(s)+G_{1}(s)G_{2}(s)H_{1}(s)+G_{4}(s)H_{2}(s) Δ=1+G1(s)G2(s)G3(s)+G1(s)G4(s)+G2(s)G3(s)H2(s)+G1(s)G2(s)H1(s)+G4(s)H2(s)
前向通路
P 1 = G 1 ( s ) G 2 ( s ) G 3 ( s ) P_{1}=G_{1}(s)G_{2}(s)G_{3}(s) P1=G1(s)G2(s)G3(s)
P 2 = G 1 ( s ) G 4 ( s ) P_{2}=G_{1}(s)G_{4}(s) P2=G1(s)G4(s)
余子式
Δ 1 = 1 \Delta_{1}=1 Δ1=1
Δ 2 = 1 \Delta_{2}=1 Δ2=1

ϕ ( s ) = G 1 ( s ) G 2 ( s ) G 3 ( s ) + G 1 ( s ) G 4 ( s ) 1 + G 1 ( s ) G 2 ( s ) G 3 ( s ) + G 1 ( s ) G 4 ( s ) + G 2 ( s ) G 3 ( s ) H 2 ( s ) + G 1 ( s ) G 2 ( s ) H 1 ( s ) + G 4 ( s ) H 2 ( s ) \phi(s)=\frac{G_{1}(s)G_{2}(s)G_{3}(s)+G_{1}(s)G_{4}(s)}{1+G_{1}(s)G_{2}(s)G_{3}(s)+G_{1}(s)G_{4}(s)+G_{2}(s)G_{3}(s)H_{2}(s)+G_{1}(s)G_{2}(s)H_{1}(s)+G_{4}(s)H_{2}(s)} ϕ(s)=1+G1(s)G2(s)G3(s)+G1(s)G4(s)+G2(s)G3(s)H2(s)+G1(s)G2(s)H1(s)+G4(s)H2(s)G1(s)G2(s)G3(s)+G1(s)G4(s)

化简上式可得与例1一样得结果,可见,梅逊公式简单明了,并且简化了大量得计算,因此,梅逊公式可以说对系统框图的化简是必不可少的。

到此为止,自控原理(1)——流程图的化简及Mason公式的介绍已完成,如有问题,或需要探讨,请留言或联系本人。 Q Q : 2214564003 QQ:2214564003 QQ:2214564003
欢迎关注本人微信公众号:
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值