10本值得阅读的量化交易书籍

什么是量化交易?

量化交易是利用数学模型或算法来创建交易策略并进行交易。量化交易通常由大型机构交易员或对冲基金雇用,他们雇用大量的博士和工程师团队。从历史上看,量化交易领域一直非常隐秘,有效的想法往往受到公司的严密保护,但在过去几年中,公开可用的数据集和计算访问的增长,即(以 GPU 和云的形式)已经取得了进展。面向更多受众的量化交易。

量化交易概述

  任何量化交易系统都包含以下步骤

  • 识别/创建交易策略
  • 回测策略
  • 为您的策略设计执行设置/系统
  • 管理风险

上述每个步骤都需要大量的研究和反复试验才能正确。

量化交易是一个复杂的领域,需要仔细和详细的研究才能成功。以下是 10 本书,可以帮助人们开始他们的量化之旅。

1. 量化交易:如何建立自己的算法交易业务,作者:Ernest Chan。

Ernest P. Chan 是一位屡获殊荣的量化对冲基金经理。他是 IBM 机器学习领域的研究员。他现在经营着自己的公司,并且是一位知名作家,为量化交易初学者撰写了多本书籍。您可以在这里找到他的博客。

上面的书涵盖了初学者的量化交易基础知识。本书的目的是介绍量化交易涉及的所有主要关注领域。它仅讨论基本和初学者策略。

2.机器交易:部署计算机算法来征服市场作者:Ernest Chan。

这本书也是欧内斯特·P·陈 (Ernest P. Chan) 的著作。这是一本 2017 年出版的稍微旧的书,但内容仍然相关。重点不是端到端的量化交易流程,而是介绍以下领域的策略:

  • 使用因子模型
  • 用于制定策略的人工智能
  • 期权策略
  • 时间序列分析
  • 日内交易

3. 《寻找阿尔法:构建交易策略的定量方法》作者:Igor Tulchinsky。

这本书是一本经典之作,是任何认真探索进入量化交易领域的人的必读之书。伊戈尔·图尔钦斯基 (Igor Tulchinsky) 是 WorldQuant 的创始人兼首席执行官。WorldQuant 是最成功的量化对冲基金之一。本书的目的不是讨论策略,而是讨论寻找策略的过程。本书是关于“阿尔法”(这是交易策略的术语)研究以及您应该遵循哪些步骤和过程来提出新想法。本书的每一章均由 WorldQuant 的一位宽客撰写。

4.金融机器学习的进展 作者:Marcos Lopez de Prado

这本书的作者是被誉为“机器人大师”的马科斯·洛佩兹·德·普拉多。他目前是康奈尔大学工程学院的实践教授,在此之前,他曾担任 AQR Capital(一家大型对冲基金,专注于使用因子模型进行投资)的机器学习负责人。本书专门讨论了应用机器学习/人工智能创建交易策略的挑战和机遇。本书是第一本讨论在定量空间中应用 ML/AI 的所有细微差别和挑战的书籍之一,例如模型过度拟合、特征化和选择重要特征、回溯测试和评估模型。

5.资产管理者的机器学习作者:Marcos Lopez de Prado

这是马科斯·洛佩兹·德普拉多的另一本书。本书讨论了定量的 AI/ML 方法,更多地关注投资组合构建、特征选择和识别过度拟合模型。

6.主动投资组合管理的进展 作者:Richard Grinold、Ronald Kahn

这本书是一位在量化行业工作的朋友向我推荐的。本书的重点不是制定策略,而是投资组合管理。投资组合管理是将各种信号和策略组合成单个投资组合的过程,其目的是降低风险。本书讨论了构建投资组合、优化交易成本和最小化风险的方法。

7. 151 种交易策略作者:Zura Kakushadze、Juan Andres Serur

Zura Kakushadze 是一位量化金融研究员,此前也曾与 WorldQuant 合作过。这是作者最新出版的一本书。它是跨资产类别的各种策略的汇编,也是高级策略的来源。这不是一本专注于人工智能/机器学习的书,但其中许多策略可以重新构建以使用人工智能/机器学习。讨论的一些策略类型是

  • 盈利策略
  • 期权策略
  • 波动策略
  • 动量/均值回归策略
  • 指数和外汇策略。

8.资产管理机器学习作者:Emmanuel Jurczenko

本书重点介绍机器学习在交易领域的应用。最初的内容是关于机器学习的介绍,重点关注量化交易相关概念。本书讲述了

  • 创建多/空策略
  • 使用新闻/情绪进行交易
  • 使用机器学习预测回报
  • 使用机器学习进行投资组合优化。

9.用于算法交易的 Python:从想法到云部署作者:Yves Hilpisch

本书更多地关注事物的工程方面。它简要提到了交易策略。它深入讨论了如何在 python 中实现所有必需的流程。讨论的主题是

  • 处理金融数据集并用 python 读取它们
  • 如何设置云实例和 docker 进行部署
  • 如何使用 API 和数据库
  • 如何使用 conda 和虚拟环境

10.用于算法交易的机器学习 作者:Stefan Jansen

本书采用实践方法。它涵盖的内容非常广泛。涵盖的一些重要主题是

  • 使用随机森林/神经网络的多/空策略
  • 使用新闻和 NLP 来增强策略
  • 使用 CNN/RNN 等高级模型
  • 探索强化学习如何用于交易策略。

除了上述内容之外,本书还讨论了使用技术指标、线性模型和 Zipline、Alphalens、pyfolio 等库来分析策略的结果。

除了上述书籍之外,另一本重要的书是理解许多策略的先决条件

期权、期货和其他衍生品作者:John Hull & S. Basu

约翰·赫尔(John Hull)关于期权和衍生品的书是理解衍生工具的经典介绍,没有这本书,任何宽客的图书馆都是不完整的。

### 关于Python量化交易书籍推荐 对于开发者和交易者来说,选择合适的Python量化交易书籍至关重要。以下是几本备受推崇的作品: #### 1. **《Python for Data Analysis》** 这本书深入探讨了如何利用Python处理数据集并执行数据分析任务。书中涵盖了Pandas库的基础知识及其应用实例,这对于准备用于量化分析的数据非常重要[^1]。 #### 2. **《Algorithmic Trading: Winning Strategies and Their Rationale》** 此书不仅介绍了算法交易的概念和发展历程,还提供了多种成功的策略模型以及背后的逻辑原理说明。读者可以学习到构建自己的自动化交易平台所需的知识和技术要点[^2]。 #### 3. **《Machine Learning for Algorithmic Trading》** 该作品专注于机器学习技术在金融市场预测中的实际运用案例研究。通过具体项目实践指导,帮助读者掌握从特征工程到最后部署整个流程的操作方法[^3]。 #### 4. **《Quantitative Trading with R & Python》** 本书结合R语言与Python编程环境讲解金融时间序列建模等内容,并附带大量实战练习题目供读者巩固所学技能。特别适合希望同时精通这两种工具的人士阅读参考[^4]。 ```python import pandas as pd from sklearn.model_selection import train_test_split # 示例代码展示如何加载CSV文件并分割训练测试集 data = pd.read_csv('financial_data.csv') X_train, X_test, y_train, y_test = train_test_split(data.drop(columns=['target']), data['target'], test_size=0.2) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Omer_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值