关联规则FP-Growth算法

"本文详细介绍了FP-Growth算法的实施过程,包括如何构造FP-tree和寻找频繁项集。通过实例展示了数据预处理、F-list构建、FP-tree生成及频繁项集挖掘步骤。在设定的支持度50%和置信度70%条件下,最终确定了频繁项集{a,b}
摘要由CSDN通过智能技术生成

FP-Growth

本文详细介绍FP-Growth构造FP-tree和找频繁项集(笔者研究方向确认为关联规则,作为初学者,若本笔记有错误,还望大家留言指出)

已知强关联规则如下表所示

TIDItems
0a,b
1c,d
2a,c,d,e
3a,d,e
4a,b,c
5a,b,c,d

假设置信度为70%,支持度为50%

则最小支持度为:50%*6(6为集数个数)=3(表示Items中的元素满足≥3才为频繁项集)

FP-growth构造FP-tree时需要进行两次处理:

首先进行分类,求出F-list

我们先看表格,遍历一次数据集,统计每个元素出现的次数

a:5(出现5次)

b:3

c:4

d:4

e:2

然后把出现次数较小的滤掉(最小支持度3,将出现次数小于3的元素滤除)

再进行排序,将频率高的放于首位

F-list(a:5),(c:4),(d:4),(b:3)

则新的关联规则为(去除e)并根据F-list排序

TIDItems
0a,b
1c,d
2a,c,d
3a,d
4a,c,b
5a,c,d,b

开始构造FP-tree,对0项集{a,b}进行处理,元素首次出现,需要将头结点赋予它。
在这里插入图片描述
再对1项集{c,d}处理,c为新元素出现,创建新的分支。并将头结点赋予新节点。
在这里插入图片描述
再对2项集{a,c,d}处理,a已经出现,则a的次数加一,再对a进行分支。
在这里插入图片描述
再对3项集{a,d}处理
在这里插入图片描述
再对4项集{a,c,b}处理
在这里插入图片描述
再对5项集{a,c,d,b}处理
在这里插入图片描述
最后,从b、d、c、a元素的顺序找相同元素出现在哪?连接同一元素

连接b
在这里插入图片描述

连接d
在这里插入图片描述

连接c:
在这里插入图片描述
连接a:a只有一个,不需要添加连线

最终连线:
在这里插入图片描述

频繁项集:

(先找二元项集)

第一步:从底往上看
在这里插入图片描述
b出现一次,a出现5次,b不满足最小支持度,则不构成频繁项集。
第二个分支
在这里插入图片描述
b出现1次,d出现2次,都不满足最小支持度,也不构成频繁项集。
在这里插入图片描述

d出现2次,c出现3次,d不满足最小支持度,不为频繁项集。



在这里插入图片描述
c出现3次,a出现5次,都满足最小支持度,则{a,c}为频繁项集。
其他分支依次类推。

第二步:从整棵树从下望上找
{a,b}:
在这里插入图片描述

{a,b}从整棵树中找,发现有三条路径,满足最小支持度,则{a,b}属于频繁项集。

{b,d}:
在这里插入图片描述

{b,d}从整棵树找,发现出现的次数为1,不满足最小支持度。

{b,c}:
在这里插入图片描述

{b,c}从整棵树找在红色分支出现1次,在橙色分支出现一次,不满足最小支持度,则{b,c}不是频繁项集。

{c,d}:
在这里插入图片描述

{c,d}从整棵树找在红色分支出现2次,在橙色分支出现1次,满足最小支持度,则{c,d}是频繁项集。

{a,d}:
在这里插入图片描述
{a,d}从整棵树找,我们发现其中红色分支出现2次,橙色分支出现一次,满足最小支持度3,则{a,d}为频繁项集。
{a,c}已经在第一步证明为频繁项集。

依次类推找三元项集

从底往上找{b,c,d}
在这里插入图片描述

从分支中找{b,c,d},发现不满足最小支持度…(依次类推)

从整棵树找:找{a,b,c,d}的组合方式:{a,b,c}、{a,b,d}、{a,c,d}、{b,c,d}。发现并没有满足条件的项集

则这棵树不存在三元频繁项集

依次类推找四元频繁项集(三元都不存在,更何况四元,无意义)

综上所述

频繁项集为

频繁项集
{a,b}、{a,c} 、{a,d}、{c,d}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值