建表:
create table temp.practice(
shop_id string,
user_id string,
amt int
)
stored as orc;
插入数据
insert into temp.practice
values
(‘01’,‘01’,40),
(‘01’,‘01’,20),
(‘01’,‘02’,30),
(‘02’,‘03’,100),
(‘02’,‘03’,0),
(‘02’,‘02’,20),
(‘02’,‘01’,10),
(‘03’,‘05’,50),
(‘03’,‘06’,60);
以shop_id和user_id两个字段为例进行测试:
1.对shop_id和user_id 进行分组,设置窗口为shop_id
select shop_id, user_id, count() over(partition by shop_id)
from temp.practice
group by shop_id,user_id;
结果如下:
2.对shop_id和user_id 进行分组,设置窗口为user_id
select shop_id, user_id, count() over(partition by user_id)
from temp.practice
hive 中over()和group by配合使用
最新推荐文章于 2023-03-22 13:09:20 发布
本文通过创建和填充temp.practice表,展示了如何在Hive中结合使用GROUP BY和OVER()函数对shop_id和user_id进行不同粒度的分组和计数操作。实验结果显示,GROUP BY首先进行分组,随后OVER()函数基于group by的结果设定窗口大小,以生成所需统计信息。这种组合使用方式有助于按特定粒度分析数据。
摘要由CSDN通过智能技术生成