通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题和最优子结构性质的问题。
特征:
最优子结构性质:
当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。
重叠子问题性质:
在用递归算法自顶向下解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,在以后尽可能多地利用这些子问题的解。
分治与动态规划
共同点:二者都要求原问题具有最优子结构性质,都是将原问题分而治之,分解成若干个规模较小(小到很容易解决的程序)的子问题.然后将子问题的解合并,形成原问题的解.
不同点:分治法将分解后的子问题看成相互独立的,通过用递归来做。
动态规划将分解后的子问题理解为相互间有联系,有重叠部分,需要记忆,通常用迭代来做。
递推关系:
矩阵连乘问题:
#include<iostream>
using namespace std;
const int MAX = 100;
//p用来记录矩阵的行列,main函数中有说明
//m[i][j]用来记录第i个矩阵至第j个矩阵的最优解
//s[][]用来记录从哪里断开的才可得到该最优解
int p[MAX+1],m[MAX][MAX],s[MAX][MAX];
int n;//矩阵个数
void matrixChain(){
for(int i=1;i<=n;i++)m[i][i]=0;
for(int r=2;r<=n;r++)//对角线循环
for(int i=1;i<=n-r+1;i++){//行循环
int j = r+i-1;//列的控制
//找m[i][j]的最小值,先初始化一下,令k=i
m[i][j]=m[i][i]+m[i+1][j]+p[i-1]*p[i]*p[j];
s[i][j]=i;
//k从i+1到j-1循环找m[i][j]的最小值
for(int k = i+1;k<j;k++){
int temp=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
if(temp<m[i][j]){
m[i][j]=temp;
//s[][]用来记录在子序列i-j段中,在k位置处
//断开能得到最优解
s[i][j]=k;
}
}
}
}
//根据s[][]记录的各个子段的最优解,将其输出
void traceback(int i,int j){
if(i==j)return ;
traceback(i,s[i][j]);
traceback(s[i][j]+1,j);
cout<<"Multiply A"<<i<<","<<s[i][j]<<"and A"<<s[i][j]+1<<","<<j<<endl;
}
int main(){
cin>>n;
for(int i=0;i<=n;i++)cin>>p[i];
//测试数据可以设为六个矩阵分别为
//A1[30*35],A2[35*15],A3[15*5],A4[5*10],A5[10*20],A6[20*25]
//则p[0-6]={30,35,15,5,10,20,25}
//输入:6 30 35 15 5 10 20 25
matrixChain();
traceback(1,n);
//最终解值为m[1][n];
cout<<m[1][n]<<endl;
return 0;
}
动态规划C语言实现之最长公共子序列(LCS) :
递归公式如下:
/***最长公共子序列***/
/*动态规划*/
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<ctype.h>
#ifndef size_c
#define size_c 200
#endif // 预定义字符串的长度
#define EQUAL 1 //EQUAL表示c[i][j]是由c[i-1][j-1]+1来的=此时两个序列有相同的字符
#define UP 2 //UP表示c[i][j]是由c[i-1][j]来的========此时两个序列没有相同的字符
#define LEFT 3 //LEFT表示c[i][j]是由[ci][j-1]来的======此时两个序列没有相同的字符
//int char1[size_c][size_c]; //定义两个二维数组存放字符串
//int char2[size_c][size_c]; //1存放位置,2存放路径
int max(int m, int n, int i, int j);
int print(int i, int j);
/***函数一、判断LCS长度***/
int Lcs_len(char *str1, char *str2, int **char1, int **char2)
{
//int char1[size_c][size_c] = {0};
//int char2[size_c][size_c] = {0};
int m = strlen(str1);
int n = strlen(str2); //求出两个数组的边界长度
int i, j;
for (i = 0; i <= m; i++)
{
char1[i][0] = 0;
}
for (j = 0; j <= n; j++) //初始化边界条件
{
char1[0][j] = 0;
}
for ( i = 1; i <= m; i++)
{
for ( j = 1; j <= n; j++)
{
if( str1[i-1] == str2[j-1] )
// 这里使用i-1以及j-1是由于数组的下标从0开始
//另一种实现方式是逆序实现,对于路径的确定更方便
{
char1[i][j] = char1[i-1][j-1] + 1;
char2[i][j] = EQUAL;
}
else if (char1[i-1][j] >= char1[i][j-1])//在j循环时若字符串不等
{ // 则只用判断char中的元素
char1[i][j] = char1[i-1][j];
char2[i][j] = UP;
}
else
{
char1[i][j] = char1[i][j-1];
char2[i][j] = LEFT;
}
}
}
return char1[m][n]; //递归的最终位存储的数字就是LCS长度
}
/***函数二、输出LCS***/
void Print_Lcs( char *str, int **b, int i, int j)
{
if( i == 0 || j == 0)
return; //递归至边界则扫描完毕
if( b[i][j] == EQUAL)
{ //对于相等的元素,其路径为左上方对角移动
Print_Lcs(str, b, i - 1, j - 1);
printf("%c ", str[i-1]); //相等的话,原字符序列向前递归一位并打印出字符
}
else if ( b[i][j] == UP ) //不相等时判断方向:向上则数组向上位移
Print_Lcs(str, b, i - 1, j);
else
Print_Lcs(str, b, i , j - 1); //否则数组下标向左位移一位
}
/***函数三、整合LCS函数***/
void Find_Lcs( char *str1, char *str2)
{
int i,j,length;
int len1 = strlen(str1),
len2 = strlen(str2);
//申请二维数组
int **c = (int **)malloc(sizeof(int*) * (len1 + 1));
int **b = (int **)malloc(sizeof(int*) * (len1 + 1));
for( i = 0; i<= len1; i++ ) 这个等号之前没加,导致内存泄漏
{
c[i] = (int *)malloc(sizeof(int) * (len2 + 1));
b[i] = (int *)malloc(sizeof(int) * (len2 + 1));
}
//将c[len1][len2]和b[len1][len2]初始化为0
for ( i = 0; i<= len1; i++)
for( j = 0; j <= len2; j++)
{
c[i][j] = 0;
b[i][j] = 0;
}
//计算LCS的长度
length = Lcs_len(str1, str2, c, b);
printf("The number of the Longest-Common-Subsequence is %d\n", length);
//利用数组b输出最长子序列
printf("The Longest-Common-Subsequence is: ");
Print_Lcs(str1, b, len1, len2);
printf("\n");
//动态内存释放
for ( i = 0; i <= len1; i++)
{
free(c[i]);
free(b[i]);
}
free(c);
free(b);
}
/***LCS测试输出***/
int main(int *argc, int *argv[])
{
char X[size_c],Y[size_c];
int len;
printf("please enter your characters:");
scanf("%s",X);
while(strlen(X) > 200) //规定字符串序列的最大长度,此处为200
{
printf("what you input is too long, please try again");
scanf("%s\n",X);//超出限制时提醒并重新输入
}
printf("please enter your characters:");
scanf("%s",Y);
while(strlen(Y) > 200) //长度限制同上
{
printf("what you input is too long, please try again");
scanf("%s",Y);
}
Find_Lcs(X,Y); //使用LCS函数输出长度与子序列
system("pause");
}
动态规划法:求解0/1背包问题:
#include <iostream>
#include<cstdio>
#define N 100
#define MAX(a,b) a < b ? b : a
using namespace std;
struct goods{
int sign;//物品序号
int wight;//物品重量
int value;//物品价值
};
int n,bestValue,cv,cw,C;//物品数量,价值最大,当前价值,当前重量,背包容量
int X[N],cx[N];//最终存储状态,当前存储状态
struct goods goods[N];
int KnapSack(int n,struct goods a[],int C,int x[]){
int V[N][10*N];
for(int i = 0; i <= n; i++)//初始化第0列
V[i][0] = 0;
for(int j = 0; j <= C; j++)//初始化第0行
V[0][j] = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= C; j++)
if(j < a[i-1].wight)
V[i][j] = V[i-1][j];
else
V[i][j] = MAX(V[i-1][j],V[i-1][j-a[i-1].wight] + a[i-1].value);
for(int i = n,j = C; i > 0; i--){
if(V[i][j] > V[i-1][j]){
x[i-1] = 1;
j = j - a[i-1].wight;
}
else
x[i-1] = 0;
}
return V[n][C];
}
int main()
{
printf("物品种类n:");
scanf("%d",&n);
printf("背包容量C:");
scanf("%d",&C);
for(int i = 0; i < n; i++){
printf("物品%d的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);
scanf("%d%d",&goods[i].wight,&goods[i].value);
}
int sum2 = KnapSack(n,goods,C,X);
printf("动态规划法求解0/1背包问题:\nX=[");
for(int i = 0; i < n; i++)
cout<<X[i]<<" ";//输出所求X[n]矩阵
printf("] 装入总价值%d\n", sum2);
return 0;
}