花老湿学习OpenCV:Laplacian算子与边缘检测

引言:

图像的边缘有方向和幅度两个属性,沿边缘方向像素变化平缓,垂直于边缘方向像素变化剧烈.边缘上的这种变化可以用微分算子检测出来,通常用一阶或二阶导数来检测边缘。

前面已经介绍了Sobel算子,接下来介绍Laplacian算子与边缘检测。

 

Laplacian算子:

 

在一个二维函数f(x,y)中,x,y两个方向的二阶差分分别为,

所以Laplace算子的差分形式为,

 写成filter mask的形式如下:

API介绍: 

代码示例:

 

#include "pch.h"
#include <iostream>
#include "opencv2/opencv.hpp"

using namespace std;
using namespace cv;


int main()
{
	Mat src = imread("F:\\visual studio\\Image\\building2.jpg");
	if (src.empty())
	{
		cout << "Can't load the image" << endl;
		return -1;
	}
	imshow("src", src);
	//边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感,
	//因此必须采用滤波器来改善与噪声有关的边缘检测器的性能
	Mat blursrc;
	GaussianBlur(src, blursrc, Size(3, 3), 0, 0);

	//转化为灰度图
	Mat graysrc;
	cvtColor(blursrc, graysrc, cv::COLOR_BGR2GRAY);
	imshow("graysrc", graysrc);

	//Laplace变换
	Mat dst;
	Laplacian(graysrc, dst, CV_16S, 3);
	convertScaleAbs(dst, dst);

	imshow("edge", dst);
	waitKey(0);
}

 

 

 

疑问::

根据拉普拉斯算子的定义,在图像边缘处二阶导应该为0,在图像中应显示黑色,在过零点附近的波峰波谷应该显示为白色,所以我们得到的边缘实际上是  白黑白 相间的? 中间的黑色才是确切的边缘位置??

解答:

白色其实显示的边缘周围的极值点,但是几乎都是围绕在边缘周围。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值