有一个NxN整数矩阵,请编写一个算法,将矩阵顺时针旋转90度。给定一个NxN的矩阵,和矩阵的阶数N,请返回旋转后的NxN矩阵,保证N小于等于300。
测试样例:
[[1,2,3],[4,5,6],[7,8,9]],3
返回:[[7,4,1],[8,5,2],[9,6,3]]
方法一:数组下标转换法
解析:根据题意,将一个n*n矩阵顺时针旋转90度,即先列变为行,再每行分别倒序,由此我们可以利用双重循环for语句通过下标的方式得到转换后的矩阵。
代码:
#include<iostream>
#define max 100
using namespace std;
int main()
{
int a[max][max],n;
cin>>n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
cin>>a[i][j];
for(int i=0;i<n;i++)
{
for(int j=n-1;j>=0;j--)
{
cout<<a[j][i]<<" ";
}
cout<<endl;
}
return 0;
}
方法二:容器下标转换法
解析:根据题意,将一个n*n矩阵顺时针旋转90度,即先列变为行,再每行分别倒序,由此我们可以利用vector容器定义二维数组,然后调用转换矩阵的rotateMatrix函数,即定义新的二维容器,通过双重for语句利用下标的形式转换矩阵,从而得到旋转后所要求解的矩阵。
代码:
#include<iostream>
#include<vector>
using namespace std;
vector<vector<int> > rotateMatrix(vector<vector<int> > mat, int n)
{
vector<vector<int> > mat_cp = mat;
for(int i = 0;i < n; i++){
for(int j = 0;j < n; j++){
mat_cp[j][n-1-i] = mat[i][j];
}
}
return mat_cp;
}
int main()
{
vector<vector<int> > mat,a;
vector<int> v;
int n,temp;
cin>>n;
for(int i=0;i<n;i++)
{
v.clear();
for(int j=0;j<n;j++)
{
cin>>temp;
v.push_back(temp);
}
mat.push_back(v);
}
a=rotateMatrix(mat,n);
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cout<<a[i][j]<<" ";
}
cout<<endl;
}
return 0;
}