链接:
题意:
有N盒点心,这些盒子标号为1,2,...N,你有一次机会选择一些盒子作为你的晚餐,但是每个盒子里点心的数量是未知的,不过有人告诉你一些信息:
1)
这些盒子里的点心总和是C个;
2)对于盒子i,其中的点心个数最少有low_i个,最多有high_i个,即low_i<=box_i<=high_i,box_i是第i盒的点心个数。
你选择的方式如下,一次挑出N盒中的若干盒,也就是{1,2,...,N}的一个子集,然后拿走你选出的盒子,再打开它们,到此时你才知道你到底获得了多少个点心。为了吃饱晚餐,你需要吃至少X个点心。请问你需要至少选多少盒点心才能保证一定吃饱?
例如样例中:第一组选第3,4,5三盒,第二组选第1,3两盒。
思路:
这道题是贪心问题,分为两种情况贪心:
第一种是选取的盒子左边界之和≥X;
第二种是C-没有选取的盒子的右边界之和≥X,即C-N个盒子右边界之和+选取的盒子右边界之和≥X。
所以,分别按照左边界和右边界进行从大到小排序,逐个选取,获取两个结果,从这两个结果中取最优即可。
对第二个约束条件解释:
这个情况其实很不好思考,还是看了样例才明白的,
原来还有个隐形条件就是总数为c。
第一个条件,显然low从大到小排序,满足选中之和>=x就行了,这样选中的它们的实际取值都能满足条件,但是还有一个隐形条件,
选中的和要于没有选中的相加等于C,因为要选中的点心盒最少,所以假设没有选中的点心盒的实际点心为最大值,这样就反向约束了选中点心盒的实际点心数,所以high从小到大排序,选择尽可能多的未选中点心盒,让剩余的点心数>=x,所以就是C-未选中的high之和>=x{未选中尽可能多}
例如:
AC代码:
#include<bits/stdc++.h>
#include<limits.h>
#define ll long long
#define endl "\n"
const int N=1e6+5;
const int INF=0x3f3f3f3f;
const int MOD=1e9+7;
const double eps=1e-6;
using namespace std;
struct dessert{
int low;
int high;
} Dessert[55];
bool cmpA(dessert a, dessert b){
return a.low>b.low;
}
bool cmpB(dessert a, dessert b){
return a.high>b.high;
}
int main(){
int T;
cin>>T;
while(T--){
int n,C,X;
cin>>n>>C>>X;
ll sum=0;
for(int i=0;i<n;i++){
cin>>Dessert[i].low>>Dessert[i].high;
sum+=Dessert[i].high;
}
int posA=0, posB=0;
ll resA=0;
ll resB=C-sum;
sort(Dessert, Dessert+n, cmpA);
while(resA<X) resA+=Dessert[posA++].low;
sort(Dessert, Dessert+n, cmpB);
while (resB<X) resB+=Dessert[posB++].high;
if(posA<posB) cout<<posA<<endl;
else cout<<posB<<endl;
}
return 0;
}