题目链接:http://codeforces.com/contest/1228/problem/C
题解:给定一个函数f,g,题目有描述其中的表达式含义和两者之间的关系。
然后计算:
首先把给定的x用唯一分解定理分解出素因子
因为在1-n中,n/p(素因子)的值就是其1-n中有多少个数能整除p,n/p^2就是有多少个数能被p^2整除,所以做一次循环,每次n=n/p,直到n为0,sum记录每次n除以p的个数,就是1-n中能整除p的次方的数的幂指数之和了。
举个例子,45和3,n=45,p=3,第一次循环45/3=15,sum+=15 表示其中1-45中有15个数能整除3,n = 15,p,=3; n/p=5,表示1-45中有5个数能被3^2整除,sum+=5,n = 5,p=3 ; 5/3=1,表示1-45有1个数能整除3^3,sum+=1;
最终sum = 16
AC代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<set>
#include<map>
#include<vector>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
ll mod = 1e9+7;
ll x,n;
ll quick_pow(ll a,ll b){ //调用快速幂算法
ll res = 1;
while(b){
if(b&1) res = res*a%mod;
a = a*a%mod;
b>>=1;
}
return res;
}
ll cal_g(ll y,ll p){
ll m = y,sum = 0;
while(m){
sum+=m/p; //计算素因子在1-n的"贡献"
m/=p;
}
return quick_pow(p,sum);
}
int main(){
ios::sync_with_stdio(false);
cin>>x>>n;
ll ans = 1;
vector<ll> v;
for(int i=2;i*i<=x;++i){
if(x%i==0){ //唯一分解定理
ans = ans * cal_g(n,i)%mod;
while(x%i==0){
x/=i;
}
}
}
if(x!=1) ans = ans*cal_g(n,x)%mod;
cout<<ans;
return 0;
}
ac代码: