geemap学习笔记042:CLCD与GlobeLand 30米土地覆盖数据集整理

本文介绍了如何通过Python和GoogleEarthEngine(GEE)调用CLCD和GlobeLand30两个常用的土地覆盖数据集,展示了如何加载、显示和自定义年份数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

CLCD与GlobeLand30都是非常常用的30米土地覆盖数据集,其中CLCD提供了1985、1990-2022年数据,GlobeLand30只提供了2000、2010、2020三年的数据集,下面就详细的介绍如何调用这两种数据集

1 导入库并显示地图

import ee
import geemap
ee.Initialize()

2 CLCD

Map = geemap.Map()
roi = ee.Geometry.Polygon(
        [[[73.29664083302856, 54.277303330228776],
          [73.29664083302856, 16.824342178881917],
          [136.22632833302856, 16.824342178881917],
          [136.22632833302856, 54.277303330228776]]], None, False)

Map.centerObject(roi,4)
#################################################################
# The detailed information of the CLCD dataset comes from the following paper
# Jie Yang, & Xin Huang. (2021). 
# 30 m annual land cover and its dynamics in China from 1990 to 2019 [J]
#################################################################
srcFolder = 'projects/lulc-datase/assets/LULC_HuangXin/' #数据存储路径
# 有多种显示方式,可以以5年为间隔进行显示,也可以自定义年份显示,以随机颜色显示
imgList = ee.List([])
for year in range(1990, 2022, 5):
    tmpImg = ee.Image(srcFolder+'CLCD_v01_'+ str(year))
    Map.addLayer(tmpImg.selfMask().randomVisualizer(), None, 'CLCD_'+ str(year))
    imgList =  imgList.add(tmpImg)

imgList = ee.ImageCollection.fromImages(imgList)
Map.addLayer(imgList.first().selfMask().randomVisualizer(), None, 'CLCD_1990')

year_new = 2018 #自定义年份显示
image = ee.Image(srcFolder+'CLCD_v01_'+ str(year_new))
Map.addLayer(image.selfMask().randomVisualizer(), None, 'CLCD_'+ str(year_new))
Map

类别信息
image.png

image.png

3 GlobeLand30

标签信息

#################################################################
# GlobeLand30 dataset,Only includes China region
# This data is only for 2000, 2010, and 2020
#################################################################
Map = geemap.Map()
year = 2020
imgPathGLB30 = 'users/studyroomGEE/LULC_Dataset/GlobeLand30_China/GlobeLand30_China_'+str(year)
imgGLB30 = ee.Image(imgPathGLB30)
Map.centerObject(imgGLB30,4)
Map.addLayer(imgGLB30.randomVisualizer(),None,'imgLULC-GLB30-'+str(year))
Map

image.png

后记

大家如果有地信遥感方面的问题需要请教或者有项目需要合作,可以在闲 鱼软件的用户中搜索:遥感GIS工作室,请认准头像,谢谢。

2010年全球30m分辨率陆表水域数据集GlobeLand30_WTR2010)是中国捐赠给联合国(2014年9月)的全球30m分辨率土地覆盖数据集(2010)中十个数据集之一。陆表水域是地表覆盖的重要组成部分。该数据集依托全球地表覆盖遥感制图项目,根据全球优选(无云或少云)的2010年及前后1-2年间9907景30m空间分辨率的美国陆地资源卫星(Landsat)TM5、ETM 多光谱影像数据及2640景中国环境减灾卫星(HJ-1)多光谱影像数据。在数据预处理基础上,利用基于像元的水域综合提取、面向对象的图斑处理和人机交互的数据优化等遥感提取方法,兼顾陆表水域遥感提取的高效性和准确性,形成了2010年全球30m分辨率陆表水域数据集GlobeLand30_WTR2010)。该数据经过部分地区的抽样检验。数据集采用分幅方式组织数据文件,总计759个数据文件组,每个文件组包括3类数据文件,分别为以.Tif, .tfw格式存储的实体数据、以.shp格式存储的数据开发应用的遥感影像数据信息和以.xml格式存储的元数据信息。为便利获取和网络共享,实体数据被分为5个压缩数据文件包(.rar数据格式)。其中,GlobeLand30_WTR2010_1.rar是欧洲和亚洲72?E以西的地表水域数据集文件包;GlobeLand30_WTR2010_2.rar是亚洲72?E以东的地表水域数据集文件包;GlobeLand30_WTR2010_3.rar是北美洲50?以北的地表水域数据集文件包;GlobeLand30_WTR2010_4.rar是北美洲50?以南和南美洲的地表水域数据集文件包;GlobeLand30_WTR2010_5.rar是非洲和大洋洲的地表水域数据集文件包。此外,数据集中包括一个附录数据说明文件(GlobeLand30_WTR2010.xlsx)。数据表明,2010年全球陆表水域总面积为367.54万km2。全球陆表水域的空间分布不均匀。其中,北美洲占据全球地表水域面积40%以上
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值