GEE调用中国(China Land Cover Dataset,简称CLCD)1990-2022年30米分辨率的土地分类数据

博客推荐

GEE土地分类:中国30米年度土地覆盖产品annual China Land Cover Dataset, CLCD(面积提取)_30米土地利用数据gee-CSDN博客

简介

中国陆地覆盖数据集(China Land Cover Dataset,简称CLCD)是一个用于描述中国陆地覆盖类型和空间分布的数据集。该数据集由中国科学院遥感与数字地球研究所和国土资源部空间信息工程国家重点实验室联合开发,并定期更新。

CLCD数据集使用遥感影像和地理信息系统技术,结合人工解译和算法分类方法,对中国的土地覆盖进行了精确的分类和分析。它提供了具有高空间分辨率和详细分类信息的中国陆地覆盖地图。目前,CLCD数据集包含了九类主要的陆地覆盖类型,包括耕地、林地、草地、水域、城市、湿地、沙地、裸地和冰雪。

CLCD数据集具有以下特点和优势:
1. 高空间分辨率:CLCD数据集的空间分辨率可达30米,能够提供细致的地表覆盖信息。
2. 详细分类信息:CLCD数据集将陆地覆盖类型细分为多个分类,具有更精确的分类信息。
3. 定期更新:CLCD数据集会定期进行更新,以保持数据的及时性和准确性。
4. 数据共享:CLCD数据集是开放获取的,可以供科研机构、政府部门和公众使用。

CLCD数据集在土地利用规划、环境保护、自然资源管理等领域具有广泛的应用价值。它能够帮助研究人员和决策者了解中国的土地覆盖状况,分析和监测土地利用变化,制定合理的土地管理策略。

代码:

var roi = 
    /* color: #d63000 */
    /* displayProperties: [
      {
        "type": "rectangle"
      }
    ] */
    ee.Geometry.Polygon(
        [[[112.22429545674703, 39.60788768067816],
          [112.22429545674703, 39.44741242385019],
          [112.42616923604389, 39.44741242385019],
          [112.42616923604389, 39.60788768067816]]], null, false);
// var table = ee.FeatureCollection("projects/ee-bqt2000204051/assets/ANTAIBAO/Antaibao_SHP");
// var roi = table;
Map.centerObject(roi);
/*****************************************************************
The first way to upload the LULC dataset in China using each image
from the Directory: projects/lulc-datase/assets/LULC_HuangXin/
The time spans from 1990 to 2022.
*****************************************************************/
var srcFolder = 'projects/lulc-datase/assets/LULC_HuangXin/';
var imgList = ee.List([]);
for(var year = 1990; year<=2022;year++){
  var tmpImg = ee.Image(srcFolder+'CLCD_v01_'+year);
  imgList =  imgList.add(tmpImg);
}
var imgList = ee.ImageCollection.fromImages(imgList);
print("imgList",imgList);
Map.addLayer(imgList.first().selfMask().randomVisualizer(), null, 'CLCD_1990');

结果

下面是1990年的土地分类结果

 网址推荐

0代码在线构建地图应用

https://invite.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

 

### 下载 CLCD 土地利用数据的方法 #### 使用 PIE-Engine 平台下载 PIE-Engine 是一个支持大规模遥感数据分析的云计算平台,能够提供多种分辨率土地利用数据。对于 30 分辨率CLCD 数据集,可以通过以下方式获取: - **数据来源**:武汉大学黄昕教授团队制作的中国 30 度土地覆盖产品 (annual China Land Cover Dataset, CLCD)[^1]。 - **时间范围**:该数据的时间跨度为 1985 至 2019 - **操作流程**: - 注册并登录到 PIE-Engine 官网。 - 导航至“数据集市”,搜索关键词“CLCD”或“土地覆盖”找到对应的数据集- 设置感兴趣的研究区域以及所需份,完成数据裁剪和导出。 #### 利用 Google Earth Engine (GEE) 调用与下载 Google Earth Engine 提供了一个强大的云端计算环境来处理全球尺度的空间数据。目前 GEE 中也已集成最新的 CLCD 数据集,其时间跨度扩展到了 1985 至 2023 [^2]。 - **代码实现**: 以下是通过 JavaScript 编写的一段脚本用于加载指定时间段内的 CLCD 数据,并将其导出为 GeoTIFF 文件格式保存到用户的 Google Drive 上。 ```javascript // 加载 CLCD 数据集合 var clcdCollection = ee.ImageCollection('projects/sat-io/open-datasets/clcd'); // 筛选特定份图像 var yearOfInterest = '2023'; // 修改为你感兴趣的份 var image = clcdCollection.filter(ee.Filter.eq('year', parseInt(yearOfInterest))).first(); // 可视化参数设置 var visParams = { min: 1, max: 10, palette: ['ffbb22','ffff4c','ffffff','ffa500','006400','1c0ccc','0dd1b5','f903fc','cbcbcb'] }; Map.addLayer(image.clip(geometry),visParams,'Landcover '+yearOfInterest); // 将影像导出到谷歌驱动器 Export.image.toDrive({ image:image.select('landcover').clip(geometry), description:'clcd_'+yearOfInterest+'_' + geometry.coordinates.get(0).getInfo().join('_'), scale:30, region:geometry, fileFormat:'GeoTIFF', }); ``` - **注意事项**: - `geometry` 应替换为您实际定义的兴趣区边界几何对象。 - 如果需要批量下载多数据,则需循环执行上述代码片段中的筛选部分。 #### 验证与质量控制 无论采用哪种途径取得最终成果文件,在正式投入科研项目之前都建议按照既定标准实施严格的质量检验程序。这通常涉及借助更高清晰度卫星图片辅助判断分类准确性或者开展实地考察校正偏差情况直至满足预设阈值为止(即抽样精度≥90%)[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值