【数据集】中国区1990-2020逐年30m分辨率土地利用分类数据

本文介绍了武汉大学学者基于GEE平台制作的CLCD数据集,该数据集提供了1990年至2020年中国每年30米分辨率的土地覆盖信息,反映了中国土地利用的变化。数据集具有高时间分辨率,但仅覆盖中国地区,适用于环境和气候研究。文章包含了数据概述、下载链接及引用方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

中国区1990-2020逐年30m分辨率土地利用分类数据

土地覆盖 (LC) 决定了地球各圈层之间的能量交换、水和碳循环。准确的 LC 信息是环境和气候研究的基本参数。考虑到中国的LC在过去几十年中随着经济的发展发生了巨大的变化,因此迫切需要高精度的LC产品来解决这个问题。武汉大学学者在GEE平台上制作了第一个源自 Landsat 的年度中国土地覆盖数据集(CLCD)。CLCD 反映了中国快速的城市化进程和一系列生态工程,揭示了气候变化条件下人为对 LC的影响,其在全球变化研究中具有潜在应用价值。

数据概述

2021年7月,武汉大学杨杰、黄昕两位教授共同撰写题为《30m annual land cover and its dynamics in China from 1990 to 2019》的研究论文发表于Earth System Science Data(IF=11, TOP 1区)。该数据已经更新到1985-2020年,并全部公开,文末附下载方式。该数据集最大的优势在于每年30米的土地利用分类结果,且连续30年。这与GLC_FCS30、Global30、AGLC2000_2015、FROM-GLC10、ESA10、ESRI10等产品相比,时间分辨率更高。劣势在于其分类结果只针对中国,而不是全球。当然FROM-GLC10、ESA10、ESRI10在空间分辨率上可能更高。

### GEE 土地利用分类代码示例 为了实现基于GEE的土地利用分类,可以采用监督学习方法中的随机森林算法。下面展示了一个完整的Python脚本用于执行这一任务: ```python import ee ee.Initialize() # 定义研究区域 roi = ee.Geometry.Polygon( [[[107.8, 29], [107.8, 28], [108.5, 28], [108.5, 29]]]) # 加载Landsat 8 图像集合并过滤日期范围和地理位置 landsatCollection = (ee.ImageCollection('LANDSAT/LC08/C01/T1_TOA') .filterDate('2020-01-01', '2020-12-31') .filterBounds(roi)) # 获取训练样本数据集 trainingDataset = ee.FeatureCollection([ ee.Feature(ee.Geometry.Point([108.0, 28.5]), {'class': 1}), # 类型1样点 ee.Feature(ee.Geometry.Point([108.2, 28.6]), {'class': 2}) # 类型2样点 ]) # 提取波段作为特征变量 bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7'] # 训练模型 classifier = ee.Classifier.smileRandomForest(10).train({ 'features': trainingDataset, 'classProperty': 'class', 'inputProperties': bands}) # 应用分类器到图像上 classifiedImage = landsatCollection.mean().classify(classifier) # 可视化结果 palette = ['red', 'green'] mapIdDict = classifiedImage.getMapId({'min': 1, 'max': 2, 'palette': palette}) print(mapIdDict['tile_fetcher'].url_format) ``` 上述代码实现了以下功能: - 设置感兴趣区`roi`; - 过滤特定时间段内的 Landsat 8 影像; - 创建包含已知类别标签的位置点组成的训练样本集; - 使用这些位置处的光谱反射率值训练一个随机森林分类器; - 将该分类器应用于整个影像以获得土地覆盖类型的预测图层。 此过程能够有效地识别不同种类的地物,并生成对应的地图可视化输出[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值