算法-动态规划

原理

性质

能采用动态规划求解的问题一般要具有3个性质:

  • 有重叠子问题:即子问题之间不是独立的,一个子问题在下一阶段决策中可能被多次使用到。
  • 最优性原理:即最优子结构:满足两个条件,一.原问题的解可由子问题的最优解构成。
  • 无后效性,某个阶段状态一旦确定,就不受这个状态以后决策的影响。

通常情况下,能用动态规划解决的问题也能通过递归解决。动态规划实际解决的是效率问题——避免重复计算子问题。达到这一目的同样可以通过备忘录方法来实现。所以可以得到这三种思路的递进关系:递归 ⟶ \longrightarrow 备忘录 ⟶ \longrightarrow 动态规划

关键

子问题

**子问题不一定是大问题的缩小版,关键点在于满足最优子结构。**例如:最大连续子序列问题

原问题f(n)是指在n个整数a[1…n]的序列中求出最大连续子序列的和(子序列可为空)。
子问题g(i)定义为,a[1…i]的最大右端子序列a[j…i]的和。
子问题有如下状态转移方程
g ( 0 ) = 0 g(0)=0 g(0)=0 g ( i ) = m a x ( g ( i − 1 ) + a [ i ] , a [ i ] ) g(i)=max(g(i-1)+a[i], a[i]) g(i)=max(g(i1)+a[i],a[i])
且, f ( n ) = m a x ( g ( 1 ) , g ( 2 ) . . . , g ( n ) ) f(n)=max(g(1), g(2)... , g(n)) f(n)=max(g(1),g(2)...,g(n)), 所以父问题可以通过求解子问题得出,父问题的最优解所包含的子问题也是最优的。

动态规划数组

动态规划数组的目的:

  • 保存子问题的解,以求解父问题
  • 某些情况下用于回溯寻找具体方案

如下面LCS问题的动态规划数组:

在这里插入图片描述

滚动数组
只保存相关的子问题的数据,以此来压缩空间。

状态转移方程

也就是大问题如何转移成小问题的。
如求最大公共子序列LCS

有两个序列X[0…n-1],Y[0…m-1], 用dp[i][j]表示X[0…i0-1], Y[0…j-1]的最大公共子序列长度。有:
d p [ i ] [ j ] = 0                                                           i = 0 ∣ ∣ j = 0 dp[i][j]=0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i=0 ||j=0 dp[i][j]=0                                                         i=0j=0 d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1                     a [ i − 1 ] = b [ j − 1 ] dp[i][j]=dp[i-1][j-1]+1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a[i-1]=b[j-1] dp[i][j]=dp[i1][j1]+1                   a[i1]=b[j1] d p [ i ] [ j ] = m a x ( d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j ]       a [ i − 1 ] ≠ b

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值