稀疏矩阵csc_matrix函数的使用理解

本文介绍了在项目中使用OSQP求解器时,如何理解并运用稀疏矩阵的列存储方式。文章通过示意图详细阐述了indptr、indices和data三个关键数组的作用,帮助读者掌握稀疏矩阵存储原理。非零元素的行索引由indices数组保存,而data数组按列顺序存储非零元素,indptr数组则记录每列非零元素的数量。通过这种方式,可以高效地处理大量数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对csc_matrix稀疏矩阵的理解

背景

项目中使用到OSQP求解器,其使用了稀疏矩阵的方式对数据进行存储,使用过程中经常会忘记稀疏矩阵的几个存储数组存储内容的含义,记录一波,此处以图展示的方式来方便理解加深记忆。

以图的方式表示

这里以列存储的方式来说明,列存储方式理解了,行存储方式自然也理解了。下面主要是对三个存储数组的存储方式的理解:

indptr = [ ] , 以累加的方式存储每一列包含有非零数字的个数从0开始
indices = [ ],存储非零数字所在的行索引值
data = [ ], 以列顺序存储所有非零的数字

示意图

在这里插入图片描述

简单例子

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值