1094 谷歌的招聘 (20 分)
2004 年 7 月,谷歌在硅谷的 101 号公路边竖立了一块巨大的广告牌(如下图)用于招聘。内容超级简单,就是一个以 .com 结尾的网址,而前面的网址是一个 10 位素数,这个素数是自然常数 e 中最早出现的 10 位连续数字。能找出这个素数的人,就可以通过访问谷歌的这个网站进入招聘流程的下一步。
自然常数 e 是一个著名的超越数,前面若干位写出来是这样的:e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921… 其中粗体标出的 10 位数就是答案。
本题要求你编程解决一个更通用的问题:从任一给定的长度为 L 的数字中,找出最早出现的 K 位连续数字所组成的素数。
输入格式:
输入在第一行给出 2 个正整数,分别是 L(不超过 1000 的正整数,为数字长度)和 K(小于 10 的正整数)。接下来一行给出一个长度为 L 的正整数 N。
输出格式:
在一行中输出 N 中最早出现的 K 位连续数字所组成的素数。如果这样的素数不存在,则输出 404。注意,原始数字中的前导零也计算在位数之内。例如在 200236 中找 4 位素数,0023 算是解;但第一位 2 不能被当成 0002 输出,因为在原始数字中不存在这个 2 的前导零。
输入样例 1:
20 5
23654987725541023819
输出样例 1:
49877
输入样例 2:
10 3
2468024680
输出样例 2:
404
题解
字符串依次截取子串,然后利用stoi函数转int型,素数判断,合适就输出,没有就404。
素数判断都知道是判断到n的开方,用float多少麻烦,函数judge2
在循环判断是否能整除时除数
i
i
i的上界写的是
i
2
≤
n
i^2 \leq n
i2≤n,效果上和
i
≤
n
i\leq \sqrt n
i≤n是一样的,但是用一个相乘省去了申请浮点型变量和计算开方两个步骤,更巧妙一些。
为方便比较,下面例程对循环中用n开方还是i平方的两种写法分别写了两个函数。
AC例程
#include<iostream>
#include <stdio.h>
#include <string>
#include <algorithm>
#include <math.h>
using namespace std;
bool judge1(int x)
{
if(x<1)return false;
float f=sqrt(x);
for(int i=2;i<=f;i++)
if(x%i==0)return false;
return true;
}
bool judge2(int n) {
if (n == 0 || n == 1) return false;
for (int i = 2; i * i <= n; i++)
if (n % i == 0) return false;
return true;
}
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("in.txt","r",stdin);
#endif
int l,k;
string n;
cin>>l>>k;getchar();
getline(cin,n);
for(int i=0;i<=l-k;i++)
if(judge1(stoi(n.substr(i,k))))
{
cout<<n.substr(i,k)<<endl;
return 0;
}
cout<<"404"<<endl;
return 0;
}