问题描述
给定一个字符串 (s) 和一个字符模式 § ,实现一个支持 ‘?’ 和 ‘*’ 的通配符匹配。
‘?’ 可以匹配任何单个字符。
‘*’ 可以匹配任意字符串(包括空字符串)。
两个字符串完全匹配才算匹配成功。
说明:
- s 可能为空,且只包含从 a-z 的小写字母。
- p 可能为空,且只包含从 a-z 的小写字母,以及字符 ? 和 *。
示例1:
输入:
s = “aa”
p = “a”
输出: false
解释: “a” 无法匹配 “aa” 整个字符串。
示例2:
输入:
s = “aa”
p = ""
输出: true
解释: '’ 可以匹配任意字符串。
示例3:
输入:
s = “cb”
p = “?a”
输出: false
解释: ‘?’ 可以匹配 ‘c’, 但第二个 ‘a’ 无法匹配 ‘b’。
示例4:
输入:
s = “adceb”
p = “ab”
输出: true
解释: 第一个 ‘’ 可以匹配空字符串, 第二个 '’ 可以匹配字符串 “dce”.
示例5:
输入:
s = “acdcb”
p = “a*c?b”
输入: false
参考实现过程:
class Solution {
public:
bool isMatch(string s, string p) {
int len1 = s.size(), len2 = p.size();
vector<vector<bool>> dp(len1+1, vector<bool>(len2+1, false));
dp[0][0] = true;
for(int i=1; i<=len1; i++)
dp[i][0] = false;
for(int j=1; j<=len2; j++)
dp[0][j] = (p.at(j-1) == '*' && dp[0][j-1]);
for(int j=1; j<=len2; j++){
for(int i=1; i<=len1; i++){
if(p.at(j-1) != '*')
dp[i][j] = dp[i-1][j-1] && (s.at(i-1) == p.at(j-1) || '?' == p.at(j-1));
else
dp[i][j] = dp[i-1][j] || dp[i][j-1];
}
}
return dp[len1][len2];
}
};