RGB to HSV

原地址:https://blog.csdn.net/viewcode/article/details/8203728

1. RGB模型

2. HSV模型

3. 如何理解RGB与HSV的联系

4. HSV在图像处理中的应用

5. opencv中RGB-->HSV实现


在图像处理中,最常用的颜色空间是RGB模型,常用于颜色显示和图像处理,三维坐标的模型形式,非常容易被理解。

而HSV模型,是针对用户观感的一种颜色模型,侧重于色彩表示,什么颜色、深浅如何、明暗如何。第一次接触HSV,书本里首先抛出的是一个圆锥模型,由于很少使用HSV,所以印象不深刻,但看一些资料时,HSV的概念时不时出来骚扰一些人的神经,所以,弄清楚HSV与RGB的关系,建立直观的印象是很有必要的。


1. RGB模型。

三维坐标:


原点到白色顶点的中轴线是灰度线,r、g、b三分量相等,强度可以由三分量的向量表示。

用RGB来理解色彩、深浅、明暗变化:

色彩变化: 三个坐标轴RGB最大分量顶点与黄紫青YMC色顶点的连线

深浅变化:RGB顶点和CMY顶点到原点和白色顶点的中轴线的距离

明暗变化:中轴线的点的位置,到原点,就偏暗,到白色顶点就偏亮


PS: 光学的分析

三原色RGB混合能形成其他的颜色,并不是说物理上其他颜色的光是由三原色的光混合形成的,每种单色光都有自己独特的光谱,如黄光是一种单色光,但红色与绿色混合能形成黄色,原因是人的感官系统所致,与人的生理系统有关。

只能说“将三原色光以不同的比例复合后,对人的眼睛可以形成与各种频率的可见光等效的色觉。”


2. HSV模型

倒锥形模型:


这个模型就是按色彩、深浅、明暗来描述的。

H是色彩

S是深浅, S = 0时,只有灰度

V是明暗,表示色彩的明亮程度,但与光强无直接联系,(意思是有一点点联系吧)。




3. RGB与HSV的联系

从上面的直观的理解,把RGB三维坐标的中轴线立起来,并扁化,就能形成HSV的锥形模型了。

但V与强度无直接关系,因为它只选取了RGB的一个最大分量。而RGB则能反映光照强度(或灰度)的变化。

v = max(r, g, b)

由RGB到HSV的转换:


"  HSV对用户来说是一种直观的颜色模型。我们可以从一种纯色彩开始,即指定色彩角H,并让V=S=1,然后我们可以通过向其中加入黑色和白色来得到我们需要的颜色。增加黑色可以减小V而S不变,同样增加白色可以减小S而V不变。例如,要得到深蓝色,V=0.4 S=1 H=240度。要得到淡蓝色,V=1 S=0.4 H=240度。" --百度百科


4. HSV在图像处理应用


HSV在用于指定颜色分割时,有比较大的作用。

H和S分量代表了色彩信息。

分割应用:

      用H和S分量来表示颜色距离,颜色距离指代表两种颜色之间的数值差异。
     Androutsos等人通过实验对HSV颜色空间进行了大致划分,亮度大于75%并且饱和度大于20%为亮彩色区域,亮度小于25%为黑色区域,亮度大于75%并且饱和度小于20%为白色区域,其他为彩色区域。

   对于不同的彩色区域,混合H与S变量,划定阈值,即可进行简单的分割。


HSV的去阴影算法:

Improving shadow suppression in moving object detection with HSV color information


5. RGB --> HSV中的opencv实现



 
 
  1. struct RGB2HSV_f
  2. {
  3.     typedef float channel_type;
  4.     
  5.     RGB2HSV_f( int _srccn, int _blueIdx, float _hrange)
  6.     : srccn(_srccn), blueIdx(_blueIdx), hrange(_hrange) {}
  7.     
  8.     void operator()(const float* src, float* dst, int n) const
  9.     {
  10.         int i, bidx = blueIdx, scn = srccn;
  11.         float hscale = hrange*( 1.f/ 360.f);
  12.         n *= 3;
  13.     
  14.         for( i = 0; i < n; i += 3, src += scn )
  15.         {
  16.             float b = src[bidx], g = src[ 1], r = src[bidx^ 2];
  17.             float h, s, v;
  18.             
  19.             float vmin, diff;
  20.             
  21.             v = vmin = r;
  22.             if( v < g ) v = g;
  23.             if( v < b ) v = b; // v = max(b, g, r)
  24.             if( vmin > g ) vmin = g;
  25.             if( vmin > b ) vmin = b;
  26.             
  27.             diff = v - vmin;
  28.             s = diff/( float)( fabs(v) + FLT_EPSILON); // s = 1 - min/max
  29.             diff = ( float)( 60./(diff + FLT_EPSILON));
  30.             if( v == r )
  31.                 h = (g - b)*diff;
  32.             else if( v == g )
  33.                 h = (b - r)*diff + 120.f;
  34.             else
  35.                 h = (r - g)*diff + 240.f;
  36.             
  37.             if( h < 0 ) h += 360.f; // h 求值
  38.             
  39.             dst[i] = h*hscale;
  40.             dst[i+ 1] = s;
  41.             dst[i+ 2] = v;
  42.         }
  43.     }
  44.     
  45.     int srccn, blueIdx;
  46.     float hrange;
  47. };


RGB --> GRAY的实现 算法:


 
 
  1. template< typename _Tp> struct RGB2Gray
  2. {
  3. typedef _Tp channel_type;
  4. RGB2Gray( int _srccn, int blueIdx, const float* _coeffs) : srccn(_srccn)
  5. {
  6. static const float coeffs0[] = { 0.299f, 0.587f, 0.114f }; // 三分量系数不同,人眼对绿色最敏感,所以G分量系数较大
  7. memcpy( coeffs, _coeffs ? _coeffs : coeffs0, 3* sizeof(coeffs[ 0]) );
  8. if(blueIdx == 0)
  9. std::swap(coeffs[ 0], coeffs[ 2]);
  10. }
  11. void operator()(const _Tp* src, _Tp* dst, int n) const // 运算
  12. {
  13. int scn = srccn;
  14. float cb = coeffs[ 0], cg = coeffs[ 1], cr = coeffs[ 2];
  15. for( int i = 0; i < n; i++, src += scn)
  16. dst[i] = saturate_cast<_Tp>(src[ 0]*cb + src[ 1]*cg + src[ 2]*cr); // 结果
  17. }
  18. int srccn;
  19. float coeffs[ 3];
  20. };


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值