【ICLR 2022】异常检测 | Anomaly Detection for Tabular Data with Internal Contrastive Learning

该论文提出了一种内部对比学习(ICL)方法,用于表格数据的异常检测。通过构建特征对并最大化匹配特征对之间的互信息,即使在没有先验辅助任务的情况下,也能增强模型对表格数据的理解和检测能力。实验表明,该方法在多个数据集上优于基线,并具有稳定的超参数表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

请添加图片描述
论文题目:Anomaly Detection for Tabular Data with Internal Contrastive Learning
论文链接:https://openreview.net/pdf?id=_hszZbt46bT

1. 背景与动机

异常检测中,单类分类的方法(One-Class Classification)通过观察基本正常/完全正常的训练集来学习数据的正常模式,从而将测试样本中不符合已知正常模式的样本判定为异常样本。

近年来,为了增强正常模式的学习质量,人们常在图像异常检测任务中针对数据的结构设计辅助任务(pretext task),以改进检测模型的检测能力。
例如,人们直观地知道一个图像经过旋转后并不会改变它原本的类别归属,因此图像被旋转不同的角度来制造新样本。新样本与原始样本归属于同一类,而又区分于其他类。(这种特性被称作类相关,class-dependent)。
通过辅助任务,样本的表达被丰富,从而提升了模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值