遥感生态指数(RSEI)——水体掩膜及主成分分析

本文介绍了遥感生态指数(RSEI)的计算过程,包括水体掩膜的提取,使用MNDWI指数,通过New Raster Color Slice设置水体范围,制作掩膜区。接着对NDVI、Wet、NDBSI、LST进行掩膜和标准化处理,进行主成分分析,得到RSEI值。通过1-RSEI0公式调整,使得高RSEI值表示生态环境更好,并对研究区进行生态环境等级划分。RSEI用于动态监测生态环境变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、水体掩膜

①利用水体指数来增强水体信息,弱化其他地物的信息,便于提取研究区的水体范围

NDWI = (Green - NIR)/(Green + NIR )

MNDWI = (Green - SWIR1) / (Green + SWIR1)

INDVI = (Red - NIR) / (Red + NIR)

以上三个水体指数都能在一定程度上突出水体,推荐使用MNDWI指数进行水体范围的提取。在Bandmath中输入水体指数法的计算公式:(float(b2-b5))/(b2+b5),其中b2、b5分别表示绿光波段和中中红外1波段。得到增强水体后的图像,如图1

图1 增强水体

②在生成的水体指数图层,右击选择【New Raster Color Slice】,仅保存一个color,根据水体值的范围设置合理的color范围。一般情况下,水体的范围在[0.25,1],具体的要根据研究区确定。我的研究区范围是厦门,水体范围大致在[0.4,1]之间,如图2、图3所示

### IBI指数的概念与计算方法 IBI(Index-Based Indicator)通常被称为基于指数的指示器,主要用于通过组合多种遥感指数来实现特定目标的地物信息增强。其核心理念在于通过对多源遥感数据进行标准化处理并加权合成,从而突出某一类地物特征的信息。 #### EBSI作为IBI的一种应用实例 为了增强裸土信息,可以通过归一化处理结合其他遥感指数构建增强型裸土指数EBSI。具体而言,EBSI公式定义如下[^1]: \[ EBSI = \frac{BSI - MNDWI}{BSI + MNDWI} \] 其中,\( BSI \) 表示建筑土壤指数,而 \( MNDWI \) 则表示改进后的归一化差水体指数。该公式的目的是通过对比裸土区域与其他地表覆盖类型的差异,进一步提升裸土识别的效果。 #### 遥感指数在IBI中的作用 不同的遥感指数适用于提取不同类型的地物信息。例如,在GEE平台中可以计算多种遥感指数用于区分植被、水体和建筑物等地物特性[^2]。这些基础指数经过适当的选择与组合后,能够形成更复杂的综合性指数,如IBI。 #### 主成分分析法的应用于IBI计算 一种常见的方式是采用主成分分析(PCA),这种方法被广泛应用于遥感生态指数(RSEI)的计算过程中[^3]。以下是利用Landsat-8卫星影像数据计算四个关键指标(LST、NDVI、NDBSI 和 WET)的一个Python代码片段: ```python import ee def calculate_indices(image): ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI') lst = image.select('B10').multiply(0.1).subtract(273.15).rename('LST') # Simplified LST calculation ndbsi = image.expression( '(SWIR - NIR) / (SWIR + NIR)', { 'SWIR': image.select('B6'), 'NIR': image.select('B5') }).rename('NDBSI') wet = image.expression( '((GREEN + SWIR) - (NIR * 2)) / ((GREEN + SWIR) + (NIR * 2))', { 'GREEN': image.select('B3'), 'SWIR': image.select('B6'), 'NIR': image.select('B5') }).rename('WET') return image.addBands(ndvi).addBands(lst).addBands(ndbsi).addBands(wet) # Example usage with Landsat-8 collection collection = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR').filterDate('2020-01-01','2020-12-31').map(calculate_indices) ``` 上述代码展示了如何从Landsat-8图像中提取所需的波段,并生成相应的遥感指数。之后可运用PCA技术对所得指数进行降维处理,最终得到反映整体生态环境状况的单一数值——即RSEI或其他形式的IBI。
评论 151
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值