生态遥感指数RSEI

本文详细介绍了RISE指数中的多个关键参数计算方法,包括绿度指数(如NDVI),湿度指数(如WET),干度指数(NDBSI),以及热度指数(如LST)的反演过程,涉及Landsat传感器数据处理和ENVI软件的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RISE指数
在这里插入图片描述

1.绿度指数:NDVI或者FVC(像元二分法)
Ndvi计算NDVI=(NIR-Red)/(NIR+Red)
在这里插入图片描述

2.湿度指数WET(TM和OLI参数不一致所以有两个计算公式)
湿度公式:WET = c1B1 + c2B2 + c3B3 +c4B4+c5B5 + c6B6
注:B1-B6 分别代表蓝波段、绿波段、红波段、近红波段、中红外波段 1中红外波段 2;
c1~c6是传感器参数由于传感器的类型不同,参数也相应有所不同。其中,TM 传感器,c1 ~c6分别为 0.0315、0.2021、 0.3012、0.1594、-0.6806、-0.6109;
OLI传感器,c1 ~ c6 分别为 0.1511、0.1973、 0.3283、0.3407、-0.7117-0.4559
Wet-TM=(b10.0315+b20.2021+b30.3012+b40.1594+b5*(-0.6806)+b7*(-0.6109))/10000
在这里插入图片描述

Wet-OLT=(b10.1511+b20.1973+b30.3283+b40.3407+b5*(-0.7117)+b7*(-0.4559))/10000
在这里插入图片描述

3.干度指数(NDBSI)计算
干度指数(NDBSI)由城市建筑指数(IBI)和裸土指数(SI)的平均值得到的,该指数的范围是[-1,1],值越大,表示越干燥。
在这里插入图片描述

其中,ρblue、ρgreen、ρred、ρnir、ρswir1分别表示蓝、绿、红、近红外、中红外1,在Bang math中输入公式为:
SI = (float((b3+b5)-(b1+b4)))/((b3+b5)+(b1+b4))
Landsat——tm
在这里插入图片描述

Landsat-——oli
在这里插入图片描述

    IBI=((float(2*b5))/(float(b5+b4))-((float(b4))/(float(b4+b3))+(float(b2))/(float(b2+b5))))/((float(2*b5))/(float(b5+b4))+                         ((float(b4))/(float(b4+b3))+(float(b2))/(float(b2+b5))))

Landsat-tm

在这里插入图片描述

Landsat-oli

在这里插入图片描述

其中,b1~b5分别为蓝、绿、红、近红外波段、中红外波段1.
NDSI = (b1+b2)/2
在这里插入图片描述

其中,b1、b2分别为IBI图像、SI图像。
4.热度指数计算(LST)
使用大气矫正法对landsat-8地表温度进行反演
原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。
1)首先打开数据_,对第10波段进行辐射定标(Band10的后缀为Thermal),获得辐射亮度图像。在ENVI中打开原始数据_MTL.txt,选择Radiometric Calibration工具,选择_MTL_Thermal数据,并根据需要选择spatial subset在这里插入图片描述
A归一化植被指数(NDVI)

          NDVI=(NIR-Red)/(NIR+Red)

B计算植被覆盖度Fv

计算植被覆盖度Fv采用的是混合像元分解法,将整景影像的地类大致分为水体、植被和建筑,具体的计算公式如下:
FV = (NDVI- NDVIS)/(NDVIV - NDVIS)
其中,NDVI为归一化差异植被指数,取NDVIV = 0.70和NDVIS = 0.00,且有,当某个像元的NDVI大于0.70时,FV取值为1;当NDVI小于0.00,FV取值为0。
利用ENVI的Band Math,在公式输入栏中输入:
Fv=(b1 gt 0.7)*1+(b1 lt 0.05)0+(b1 ge 0.05 and b1 le 0.7)((b1-0.05)/(0.7-0.05))

C地表比辐射率ε计算ε
根据前人的研究,将遥感影像分为水体、城镇和自然表面3种类型。本专题采取以下方法计算研究区地表比辐射率:水体像元的比辐射率赋值为0.995,自然表面和城镇像元的比辐射率估算则分别根据下式进行计算:
Ε(surface)=0.9625+0.0614Fv-0.0461FV2
Ε(building)=0.9589+0.086Fv-0.0671Fv2
式中,εsurface和εbuilding分别代表自然表面像元和城镇像元的比辐射率。
在ENVI中的计算公式:
Surf=(b1 le 0)0.995+(b1 gt 0 and b1 lt 0.7)(0.9589+0.086b2-0.0671b2b2)+(b1 ge 0.7)(0.9625+0.0614b2-0.0461b2*b2)
其中,b1为NDVI值,b2为植被覆盖度

D计算相同温度下黑体的辐射亮度值
查询大气剖面数据(http://atmcorr.gsfc.nasa.gov/),输入相关参数可得到大气剖面信息:大气在热红外波段的透过率(t),大气向上辐射亮度(Lu),大气向下辐射亮度(Ld)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

BlackT=(b2-Lu-t*(1-b1)Ld)/(tb1)

        2018:BlackT=(b2-0.94-0.87*(1-b1)*1.57)/(0.87*b1)

其中,b1选择地表比辐射率图像,b2选热红外波段辐射亮度图像

反演地表温度
Landsat 5:T=(1260.56)/alog(607.76/b1+1)-273

        Landsat 8:T=(1321.08)/alog(774.89/b1+1)-273

其中,B1选择相同温度下黑体辐射亮度图像

### 使用ENVI进行RSEI主成分分析计算 #### 准备工作 为了在ENVI中执行RSEI的主成分分析(PCA),需要准备多光谱影像数据集。通常使用的波段包括近红外(NIR)、红(Red)、绿(Green),以及其他可能影响生态环境评估的辅助波段。 #### 数据预处理 确保输入的数据已进行了辐射定标和大气校正,以便获得更精确的结果。这一步骤对于提高后续主成分分析的有效性和准确性至关重要[^3]。 #### 执行主成分分析 1. **启动ENVI软件并加载图像** - 启动ENVI应用程序。 - 加载用于分析的多光谱或高光谱遥感影像文件。 2. **选择主成分变换工具** - 导航至`Basic Tools -> Transform -> Principal Components...` 3. **配置参数设置窗口** - 在弹出对话框内指定要参与PCA运算的具体波段组合。 - 设置输出选项,保存转换后的主成分图像位置及名称。 4. **运行主成分分析过程** - 单击OK按钮开始计算。 - 软件会自动完成特征向量提取与投影操作,并生成新的主成分层叠产品。 5. **查看结果** - 主界面将显示各主分量对应的方差贡献率直方图。 - 用户可以直观判断哪些主成分为主要信息承载者。 6. **调整最终RSEI值** 如果发现某些区域内生态状况良好却对应较低的第一主成分得分,则应考虑应用修正公式\( \text{RSEI} = 1-\text{PC}_1 \)[^2]来重新定义评价标准,使得较高的RSEI分数代表更好的生态系统健康状态。 7. **解释荷载矩阵** 对于每一个原始变量而言,在各个主成分上的负荷反映了该变量对该主成分的重要性程度。利用荷载可以帮助理解不同物理意义下的权重分布情况。 8. **验证一致性** 当对比Google Earth Engine (GEE)平台所得数值时,注意到两者间可能存在符号差异;如果遇到这种情况,仅需简单改变符号即可实现一致化表达[^1]。 ```python import numpy as np def adjust_rsei(pc1_values): """ Adjusts the RSEI values based on PC1. Parameters: pc1_values (numpy array): Array of first principal component scores. Returns: adjusted_rsei (numpy array): Adjusted RSEI values where higher value indicates better ecological condition. """ # Apply adjustment formula to ensure positive correlation between high RSEI and good ecology adjusted_rsei = 1 - pc1_values return adjusted_rsei ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值