MATLAB实现BP神经网络预测汽油辛烷值

MATLAB实现BP神经网络预测汽油辛烷值

今天学习的新内容,在这里记录一下便于日后复习
1.清空变量,做好准备工作

%% I. 清空环境变量
clear all
clc

2.导入数据,划分前50个为训练样本,后10个是预测样本

%% II. 训练集/测试集产生
%%
% 1. 导入数据
load spectra_data.mat
%%
% 2. 随机产生训练集和测试集
% randperm(60)随机产生1到60中的数字产生60个
temp = randperm(size(NIR,1));
% 训练集——50个样本
P_train = NIR(temp(1:50),:)';
T_train = octane(temp(1:50),:)';
% 测试集——10个样本
P_test = NIR(temp(51:end),:)';
T_test = octane(temp(51:end),:)';
N = size(P_test,2);

3.数据前期的预处理,进行归一化

%% III. 数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);
[t_train, ps_output] = mapminmax(T_train,0,1);

4.创建神经网络

%% IV. BP神经网络创建、训练及仿真测试
%%
% 1. 创建网络
% 9是隐含层个数
net = newff(p_train,t_train,9);
%%
% 2. 设置训练参数
% 设置迭代次数
net.trainParam.epochs = 1000;
% 设置误差目标
net.trainParam.goal = 1e-3;
% 设置学习率
net.trainParam.lr = 0.01;
%%
% 3. 训练网络
net = train(net,p_train,t_train);
%%
% 4. 仿真测试
t_sim = sim(net,p_test);
%%
% 5. 数据反归一化
T_sim = mapminmax('reverse',t_sim,ps_output);

在这里插入图片描述
在这里插入图片描述
5.检测训练效果

%% V. 性能评价
%%
% 1. 相对误差error
error = abs(T_sim - T_test)./T_test;
%%
% 2. 决定系数R^2
R2 = (N * sum(T_sim .* T_test) - sum(T_sim) * sum(T_test))^2 / ((N * sum((T_sim).^2) - (sum(T_sim))^2) * (N * sum((T_test).^2) - (sum(T_test))^2)); 
%%
% 3. 结果对比
result = [T_test' T_sim' error']

6.画图可视化结果

%% VI. 绘图
figure
plot(1:N,T_test,'b:*',1:N,T_sim,'r-o')
legend('真实值','预测值')
xlabel('预测样本')
ylabel('辛烷值')
string = {'测试集辛烷值含量预测结果对比';['R^2=' num2str(R2)]};
title(string)

在这里插入图片描述

©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页