RBF神经网络——基于近红外光谱的汽油辛烷值预测
问题描述
辛烷值是汽油最重要的品质指标,传统的实验室检测方法存在样品用量大、测试周期长和费用高等问题,不适用与生产控制,特别是在线测试,近红外光谱分析方法(NIR),作为一种快速分析方法,已经广泛应用于农业、制药、生物化工、石油产品等领域。其优越性是无损检测、低成本、无污染、能在线分析,更适合于生产和控制的需要。
针对采集得到的60组汽油样品,利用傅立叶近红外变换光谱仪对其扫描,扫描范围为900~1700nm,扫描间隔为2nm,每个样品的光谱曲线共含有401个波长点。同时,利用传统实验室检测方法测定其辛烷值含量。现要求利用RBF神经网络建立汽油样品近红外光谱与其辛烷值之间的关系的数学模型,并对模型的性能进行评价。
获取数据
公共号“不研而喻”中回复“汽油辛烷值预测”,获取本文所需数据。
公共号“不研而喻”中回复“书籍”,获取50本数据分析、python、统计学经典书籍。
扫描二维码,在“不研而喻”中回复“汽油辛烷值预测”
解题思路及步骤
1.产生训练集/测试集
为了保证建立的模型具有良好的泛化能力,要求训练集样本足够