【机器学习系列】之朴素贝叶斯和半朴素贝叶斯

作者:張張張張
github地址:https://github.com/zhanghekai
【转载请注明出处,谢谢!】

【机器学习系列】之朴素贝叶斯和半朴素贝叶斯
【机器学习系列】之朴素贝叶斯代码案例

一、朴素贝叶斯概述

     \quad\;\; 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。贝叶斯的思想可以概括为先验概率+数据=后验概率,一般来说先验概率就是对于数据所在领域的历史经验。

朴素贝叶斯(简称:NB) 法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入 x x x,利用贝叶斯定理求出后验概率最大的输出 y y y。朴素贝叶斯法实现简单,学习与预测的效率都很高,是一种常用的方法。

朴素贝叶斯相关的统计学知识:

  • 条件独立公式,如果 X X X Y Y Y相互独立,则有:
    P ( X , Y ) = P ( X ) P ( Y ) P(X,Y)=P(X)P(Y) P(X,Y)=P(X)P(Y)

  • 条件概率公式:
    P ( Y ∣ X ) = P ( X , Y ) / P ( X ) P ( X ∣ Y ) = P ( X , Y ) / P ( Y ) P(Y|X)=P(X,Y)/P(X)\\P(X|Y)=P(X,Y)/P(Y) P(YX)=P(X,Y)/P(X)P(XY)=P(X,Y)/P(Y)
    整理有: P ( Y ∣ X ) = P ( X ∣ Y ) P ( Y ) / P ( X ) P(Y|X)=P(X|Y)P(Y)/P(X) P(YX)=P(XY)P(Y)/P(X)

  • 全概率公式:
    P ( X ) = ∑ k P ( X ∣ Y = Y k ) P ( Y k ) P(X)=\sum_{k}P(X|Y=Y_k)P(Y_k) P(X)=kP(XY=Yk)P(Yk)
    其中 ∑ k P ( Y k ) = 1 \sum_kP(Y_k)=1 kP(Yk)=1

  • 由上述推出贝叶斯公式:
    P ( Y k ∣ X ) = P ( X ∣ Y k ) P ( Y k ) ∑ k P ( X ∣ Y = Y k ) P ( Y k ) P(Y_k|X)=\frac{P(X|Y_k)P(Y_k)}{\sum_kP(X|Y=Y_k)P(Y_k)} P(YkX)=kP(XY=Yk)P(Yk)P(XYk)P(Yk)

二、朴素贝叶斯分类器

1. 朴素贝叶斯分类器表达式

朴素贝叶斯分类器 采用了“属性条件独立性假设”,对已知类别,假设所有属性相互独立。

假设有 N N N种可能的标记类别,即 Y = { c 1 , c 2 , ⋯   , c N } Y=\{c_1,c_2,\cdots ,c_N\} Y={ c1,c2,,cN}, x x x为样本点。

基于属性条件独立性假设,条件概率公式 可重写为:
P ( c ∣ x ) = P ( c ) P ( x ) ∏ i = 1 d P ( x i ∣ c ) ( 1 ) P(c|x)=\frac{P(c)}{P(x)}\prod_{i=1}^{d}P(x_i|c)\qquad\qquad\qquad(1) P(cx)=P(x)P(c)i=1dP(xic)(1)
其中 d d d为特征数量, x i x_i xi x x x在第 i i i个特征上的取值。

由于对所有类别来说 P ( X ) P(X) P(X)相同,因此基于式 ( 1 ) (1) (1)的贝叶斯判定准则有
h n b ( x ) = a r g    m a x ⎵ c ∈ Y P ( c ) ∏ i = 1 d P ( x i ∣ c ) ( 2 ) h_{nb}(x) =\underbrace{arg\;max}_{c\in Y}P(c)\prod_{i=1}^dP(x_i|c)\qquad\qquad\qquad(2) hnb(x)=cY argmaxP(c)i=1dP(xic)(2)
这就是朴素贝叶斯分类器的表达式。

总结: 朴素贝叶斯分类器的训练过程就是基于训练集 D D D来估计类先验概率 P ( c ) P(c) P(c),并为每个特征估计条件概率 P ( x i ∣ c ) P(x_i|c) P(xic)

2. 极大似然估计

上述(2)式中 P ( c ) P(c) P(c) P ( x i ∣ c ) P(x_i|c) P(xic)的求法如下:

D c D_c Dc表示训练集 D D D中第 c c c类样本组成的集合,若有充足的独立同分布样本,则可容易地估计出类先验概率:
P ( c ) = ∣ D c ∣ ∣ D ∣ ( 3 ) P(c)=\frac{|D_c|}{|D|}\qquad\qquad\qquad(3) P(c)=DDc(3)

  • 离散特征而言,令 D c , x i D_{c,x_i} Dc,xi表示 D c D_c Dc中在第 i i i个特征上取值为 x i x_i xi的样本组成的集合,则条件概率 P ( x i ∣ c ) P(x_i|c) P(xic)可估计为:
    P ( x i ∣ c ) = ∣ D c , x i ∣ ∣ D c ∣ ( 4 ) P(x_i|c)=\frac{|D_{c,x_i}|}{|D_c|}\qquad\qquad\qquad(4) P(xic)=DcDc,xi(4)

  • 连续特征而言,可考虑概率密度函数,假定 P ( x i ∣ c ) → N ( μ c , i

  • 0
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值