LeetCode 365. 水壶问题

题目

有两个水壶,容量分别为 jug1Capacity 和 jug2Capacity 升。水的供应是无限的。确定是否有可能使用这两个壶准确得到 targetCapacity 升。

如果可以得到 targetCapacity 升水,最后请用以上水壶中的一或两个来盛放取得的 targetCapacity 升水。

你可以:

  • 装满任意一个水壶
  • 清空任意一个水壶
  • 从一个水壶向另外一个水壶倒水,直到装满或者倒空

示例 1:

输入: jug1Capacity = 3, jug2Capacity = 5, targetCapacity = 4
输出: true
解释:来自著名的 “Die Hard”

示例 2:

输入: jug1Capacity = 2, jug2Capacity = 6, targetCapacity = 5
输出: false

示例 3:

输入: jug1Capacity = 1, jug2Capacity = 2, targetCapacity = 3
输出: true

提示:

  • 1 <= jug1Capacity, jug2Capacity, targetCapacity <= 106

题解

使用深度优先搜索(DFS)来解决水壶问题是一种方法。在这个方法中,我们将不同的水壶状态(即每个水壶中的水量)视为图的节点,并探索所有可能的操作(装满、清空、转移水),直到找到可以达到目标容量的状态。

DFS的关键是避免重复访问相同的状态,因此我们需要使用一个集合来存储已经访问过的状态。

水壶的操作有以下几种状态:

  • 将第一个水壶装满。
  • 将第二个水壶装满。
  • 将第一个水壶倒空。
  • 将第二个水壶倒空。
  • 从第一个水壶向第二个水壶倒水,直到第一个水壶为空或第二个水壶满。
  • 从第二个水壶向第一个水壶倒水,直到第二个水壶为空或第一个水壶满

代码

以下是用DFS解决这个问题的Java代码:

class Solution {

    private Set<Long> set = new HashSet<>();

    private int z, jug1Capacity, jug2Capacity;

    public boolean canMeasureWater(int jug1Capacity, int jug2Capacity, int targetCapacity) {
        z = targetCapacity;
        this.jug1Capacity = jug1Capacity;
        this.jug2Capacity = jug2Capacity;
        return dfs(0, 0);
    }

    public boolean dfs(int x, int y) {
        long temp = save(x, y);
        if (!set.add(temp)) {
            return false;
        }
        if (x == z || y == z || x + y == z) {
            return true;
        }
        if (dfs(jug1Capacity, y) || dfs(x, jug2Capacity) || dfs(x, 0) || dfs(0, y)) {
            return true;
        }
        int gap1 = Math.min(x, jug2Capacity - y);
        int gap2 = Math.min(jug1Capacity - x, y);
        return dfs(x - gap1, y + gap1) || dfs(x + gap2, y - gap2);
    }

    private long save(int a, int b) {
        return a * 1000000L + b;
    }
}

代码的核心是递归地探索所有可能的水壶状态,直到找到一种状态满足目标条件。下面是对代码的详细解释:

  1. 类Solution中定义了几个私有变量:
  • set:用于存储已经访问过的水壶状态。
  • z:目标容量。
  • jug1Capacity和jug2Capacity:两个水壶的容量。
  1. canMeasureWater方法是类的公共方法,用于初始化并开始DFS过程。
  • 首先设置目标容量z和两个水壶的容量。
  • 然后调用dfs方法开始深度优先搜索,初始水壶状态为(0,0),表示两个水壶都是空的。
  1. dfs方法是进行深度优先搜索的核心。
  • 首先创建一个长整型值temp,通过调用save方法将当前水壶状态(x, y)编码为一个唯一的数字。
  • 如果当前状态已经在set中,表示这个状态之前已经访问过,因此返回false以避免重复搜索。
  • 接下来检查当前状态是否满足目标条件(即任一水壶或两个水壶的总容量等于目标容量z)。
  • 如果当前状态不满足目标条件,方法将探索所有可能的下一个状态:
    • 将第一个水壶装满。
    • 将第二个水壶装满。
    • 将第一个水壶倒空。
    • 将第二个水壶倒空。
    • 从第一个水壶向第二个水壶倒水,直到第一个水壶为空或第二个水壶满。
    • 从第二个水壶向第一个水壶倒水,直到第二个水壶为空或第一个水壶满。
  1. save方法用于将两个整数编码为一个唯一的长整型值,以便在set中存储和检查状态。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值