- 博客(54)
- 收藏
- 关注
原创 Nginx配置动静分离
动静分离:严格意义是将动态请求和静态请求分离。一种是将静态文件独立成单独的域名,放置在独立的服务器(主流方案)另一种是混合在一起,通过nginx区分。通过location 指定不同的后缀名实现不同的请求转发。通过 expires 参数设置,可以设置浏览器缓存过期时间减少与服务器之前的请求和流量。Expires定义:给一个资源设定一个过期时间,无需通过服务器进行验证,直接通过浏览器自身确定是否过期,不会产生额外的流量,适用于不经常变动的资源。设置3d,表示三天内访问此url,发送一个请求,对比服务
2022-05-14 14:17:31 512
原创 Nginx反向代理负载均衡配置
1.1 反向代理配置1效果:输入地址8.130.9.82:80,跳转到linux系统的tomcat,8080主页。准备工作:安装jdk 默认安装到/usr/libyum install -y java-1.8.0-openjdk.x86_64 安装包安装tomcat /usr/srctar -xvf 解压;在/bin/ 启动tomcat ./startup.sh开放防火墙8080端口 测试端口8081、8082、9001firewall-cmd --add-port=8080/t
2022-05-12 17:15:03 414
原创 Vue入门
1. Vue概述MVVM模式通过视图与模型的双向绑定简化前端操作,渐进式框架2. 搭建工程vue前端框架,是一个js文件;下载js文件并在页面中引用vue.js下载方式:引用在线vue.js离线下载vue.jsnpm包资源管理器,可以下载vue.js<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8"> <title>Title</tit
2021-11-21 17:33:08 495
原创 冒泡、选择、插入排序算法
1. 冒泡排序时间复杂度O(n^2) 稳定一次比较相邻元素的值,如果是逆序就交换,然后每轮排序都会确定出最右侧的最大元素。下一轮的循环次数就会减少一次。第一趟排序:(1)3和9进行比较(2)9和-1比较,交换位置(3)9和10比较(4)10和20比较,确定出最大值20,固定不动第二趟排序: 是对 3,-1,9,10进行排序,确定出最大元素10,所以每趟排序都会减少一次。package sort;import java.lang.reflect.Array;import jav.
2021-09-29 16:56:30 130
原创 剑指 Offer 52. 两个链表的第一个公共节点
思路1:双循环,。。(有点傻)/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode(int x) { * val = x; * next = null; * } * } */public class Solution { public ListNode g.
2021-08-19 18:39:40 77
原创 剑指 Offer 25. 合并两个排序的链表
剑指 Offer 25. 合并两个排序的链表输入两个递增排序的链表,合并这两个链表并使新链表中的节点仍然是递增排序的。示例1:输入:1->2->4, 1->3->4输出:1->1->2->3->4->4限制:0 <= 链表长度 <= 1000没啥思路:直接写就完了。不过那个三元表达式还是挺干净的/** * Definition for singly-linked list. * public class ListNode
2021-08-19 17:28:16 73
原创 剑指 Offer 24. 反转链表
定义一个函数,输入一个链表的头节点,反转该链表并输出反转后链表的头节点。示例:输入: 1->2->3->4->5->NULL输出: 5->4->3->2->1->NULL限制:0 <= 节点个数 <= 5000来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/fan-zhuan-lian-biao-lcof著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出
2021-08-19 16:57:40 85
原创 字符串旋转
字符串旋转:给定两字符串A和B,如果能将A从中间某个位置分割为左右两部分字符串(都不为空串),并将左边的字符串移动到右边字符串后面组成新的字符串可以变为字符串B时返回true。例如:如果A=‘youzan’,B=‘zanyou’,A按‘you’‘zan’切割换位后得到‘zanyou’和B相同返回true。思路:两个A字符串拼接,看是否包含Bimport java.util.Scanner;public class Main{ public static void main(String[]
2021-08-19 15:43:56 115
原创 剑指 Offer 22. 链表中倒数第k个节点
剑指 Offer 22. 链表中倒数第k个节点输入一个链表,输出该链表中倒数第k个节点。为了符合大多数人的习惯,本题从1开始计数,即链表的尾节点是倒数第1个节点。例如,一个链表有 6 个节点,从头节点开始,它们的值依次是 1、2、3、4、5、6。这个链表的倒数第 3 个节点是值为 4 的节点。示例:给定一个链表: 1->2->3->4->5, 和 k = 2.返回链表 4->5.思路:要遍历倒数的几个节点,可以用递归的方式。定义一个num=0表示从后往前的次数。倒
2021-08-17 15:35:20 124
原创 3-3 Spring+SpringMVC综合练习
1.1 Spring 环境搭建步骤web.xml文件 配置Spring和Spring-mvc<?xml version="1.0" encoding="UTF-8"?><web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.
2021-08-06 22:44:30 370 1
原创 10 树结构基础部分
数组存储方式:若数组添加元素,由于数组大小是固定的,所以每次存储,数组都会扩容创建新的数组,将原来数据拷贝到新的数组,并插入数据。集合底层是用数组动态扩容。以9为例,9比7大,放在7的右侧,9比10小,放在10左侧。10.1.3 二叉树package tree;public class BinaryTreeDemo { public static void main(String[] args){ //创建一棵二叉树 BinaryTre
2021-08-06 22:43:56 89
原创 医疗项目注意事项
1. 页面数据写入数据库乱码?2. 页面的response信息是哪来的?是3. zookeeper连不上、dubbo服务不可用?4. 什么时候用autowired 还是reference?在一个工程里用autowired,不在一个工程里用reference5. 如果一个云服务器上有多个人使用,调用服务的时候可能会调到其他人的服务,所以指定应用名称要不一样...
2021-08-06 22:42:49 347
原创 83. 删除排序链表中的重复元素
存在一个按升序排列的链表,给你这个链表的头节点 head ,请你删除所有重复的元素,使每个元素 只出现一次 。返回同样按升序排列的结果链表。/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode() {} * ListNode(int val) { this.val = val; } * Lis
2021-06-11 13:19:20 77
原创 622. 设计循环队列
来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/design-circular-queue著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。class MyCircularQueue { //数组模拟队列 private int[] arr; private int maxSize; private int front; private int rear; int sum; //队列.
2021-06-11 10:22:21 96
原创 4 网络层
4.1 网络概述4.2 网络层提供的两种服务4.3.1 IPV4地址概述4.3.2 分类编址的IPV4地址4.3.3 划分子网的IPv4地址4.3.4 无分类的IPv4地址4.3.5 IPv4地址的应用规划4.4 IP数据报的发送和转发过程4.5 静态路由配置及其可能产生的路由环路问题静态路由配置R2要到目的网络,要经过R1但,R2路由表中没有,因此人工配置一个静态路由。s4.6.1
2021-06-06 11:29:50 123
原创 203.移除链表元素
来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/remove-linked-list-elements著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。/** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode() {} * ListN.
2021-06-05 10:36:22 80
原创 3-4-3 Mybatis的多表操作
1 . Mybatis多表查询1.1 一对一查询1.2 一对多查询1.3 多对多数据库CREATE TABLE `orders` ( `id` int(11) NOT NULL AUTO_INCREMENT, `ordertime` varchar(255) DEFAULT NULL, `total` double DEFAULT NULL, `uid` int(11) DEFAULT NULL, PRIMARY KEY (`id`), KEY `uid` (`uid`)
2021-06-03 17:30:51 114
原创 231. 2的幂
给你一个整数 n,请你判断该整数是否是 2 的幂次方。如果是,返回 true ;否则,返回 false 。如果存在一个整数 x 使得 n == 2^x ,则认为 n 是 2 的幂次方来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/power-of-two著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。取余的方法(垃圾)2的幂就是 n对2取余,余数为0class Solution { public boole
2021-05-30 13:39:55 71
转载 2. 两数相加
给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。请你将两个数相加,并以相同形式返回一个表示和的链表。你可以假设除了数字 0 之外,这两个数都不会以 0 开头。示例 1:输入:l1 = [2,4,3], l2 = [5,6,4]输出:[7,0,8]解释:342 + 465 = 807.示例 2:输入:l1 = [0], l2 = [0]输出:[0]示例 3:输入:l1 = [9,9,9,9,9,9,9], l2 =
2021-05-28 10:25:48 87
原创 477. 汉明距离总和
两个整数的 汉明距离 指的是这两个数字的二进制数对应位不同的数量。计算一个数组中,任意两个数之间汉明距离的总和。示例:输入: 4, 14, 2输出: 6解释: 在二进制表示中,4表示为0100,14表示为1110,2表示为0010。(这样表示是为了体现后四位之间关系)所以答案为:HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6.注意:数组中元素的范围为从 0到 10
2021-05-28 09:45:59 89
原创 1. 两数之和
给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。你可以按任意顺序返回答案。示例 1:输入:nums = [2,7,11,15], target = 9输出:[0,1]解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。示例 2:输入:nums = [3,2,4], target = 6
2021-05-27 09:21:18 68
原创 461. 汉明距离
两个整数之间的汉明距离指的是这两个数字对应二进制位不同的位置的数目。给出两个整数 x 和 y,计算它们之间的汉明距离。注意:0 ≤ x, y < 231.示例:输入: x = 1, y = 4输出: 2解释:1 (0 0 0 1)4 (0 1 0 0)来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/hamming-distance著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。垃圾解法 :10
2021-05-27 08:35:38 68
原创 剑指 Offer 11. 旋转数组的最小数字
剑指 Offer 11. 旋转数组的最小数字把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如,数组 [3,4,5,1,2] 为 [1,2,3,4,5] 的一个旋转,该数组的最小值为1。示例 1:输入:[3,4,5,1,2]输出:1示例 2:输入:[2,2,2,0,1]输出:0来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/xuan-zhuan-shu-zu-
2021-04-28 14:16:00 62
原创 剑指 Offer 04. 二维数组中的查找
在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。[[1, 4, 7, 11, 15],[2, 5, 8, 12, 19],[3, 6, 9, 16, 22],[10, 13, 14, 17, 24],[18, 21, 23, 26, 30]]来源:力扣(LeetCode)链接:https://leetcode-cn.com/probl
2021-04-28 10:07:56 79
原创 9 哈希表
提升数据查找速度,减少数据库压力。package hashtab;import java.util.HashMap;import java.util.Scanner;public class HashTabDemo { public static void main(String[] args){ //创建Hsth表 HashTab hashMap = new HashTab(7); String key=""; ..
2021-04-28 08:50:10 74
原创 8.4插值查找
若二分查找【1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16】查找数字1,需要查找多次。比较二分查找:数据多时,定位比较快。package search;public class InsertValueSearch { public static void main(String[] args){ int[] arr = new int[100]; for (int i=0;i<100;i++){
2021-04-27 08:43:20 74
原创 8.3 二分查找
二分查找:要求在有序数组中package search;//数组是有序的public class BinarySearch { public static void main(String args[]){ int arr[] = {1,8,10,89,1000,1234}; int resIndex = binarySearch(arr,0,arr.length-1,12345); System.out.println("resInd
2021-04-26 20:55:23 82
原创 分层多尺度注意力语义分割Hierarchical multi-Scale attention for semantic segmentation
Abstract多尺度推理是提升语义分割效果的常用方法。多个尺度的图像通过一个网络,然后采用平均或最大池化将结果结合。本文,提出了提出了一种注意力为基础的方法结合多尺度预测。我们的注意力机制是分层的,与当前的方法相比这将会有 4 倍的memory efficient。除了加速训练,这使我们训练更大的尺寸,得到更高的准确率。结果:Cityscapes miou 85.1 Mapillary 61.1 miouIntroduction语义分割中某些任务预测在低分辨率下得到好的结果,某些任务预.
2020-12-07 15:25:35 2347 1
原创 Learning to Predict Context-adaptive Convolution for Semantic Segmentation || ECCV2020
Abstract:Long-range 上下文信息对语义分割的性能是十分重要的。早先 re-weighting 的方法是使用 global context 来 re-weight 通道来提升准确率。但是,全局共享的特征向量对于输入图像中不同类的区域可能不是最优的。本文,我们提出了一个 Context-adaptive Convolution Network(CaC-Net) 去预测语义分割特征图中每一个空间位置的spatially-varying feature weighting vector(空间变
2020-11-30 17:19:55 647
原创 Fast-SCNN: Fast Semantic Segmentation Network
Abstract:编解码网络是最先进的语义分割结构。由于自动驾驶的兴起,实时性需求不断提升。本文,提出了 fast segmentation convolutional neural network(Fast-SCNN),高分辨率(1024*2048)的实时分割网络。基于现有的两分支快速分割方法,我们提出 “learning to dowmsample” module 能同时计算多分辨率分支的 low-level 特征。我们的网络结合了低等级和高等级特征,在cityscapes得到68%的miou,123
2020-11-26 17:49:57 738
原创 TCP通信练习3
需求:客户端:数据来自键盘输入,886结束服务端:接收到的数据写入文本文件package WangLuoBianCheng;import java.io.*;import java.net.Socket;/* 客户端:键盘输入数据,886结束 */public class HClientDemo3 { public static void main(String[] args) throws IOException { //创建Socket
2020-11-26 16:21:24 87
原创 TCP通信练习2
需求:客户端键盘输入数据,886表示发送结束。package WangLuoBianCheng;import java.io.*;import java.net.Socket;/* 客户端: 键盘输入数据,直到数据为886,发送数据结束 */public class GClientDemo2 { public static void main(String[] args) throws IOException { //创建Socket Sock
2020-11-26 16:20:56 216 1
原创 Contextual Attention Refinement Network forReal-Time Semantic Segmentation
摘要:为了在分割精度和计算cost间平衡,提出了Contextual Attention Refinement Network(CARNet),通过注意力来指导低等级和高等级特征的融合,来提升精度。我们思考了语义信息,提出了Semantic ContextLoss(SCLoss)。introduction浅层提取到的特征包含更多的低等级细节,例如边缘信息。深层提取的特征包含更多的语义信息,例如带类别和属性的区域。尽管低等级特征包含更多的有用信息,但在最终推断的重要性是不等的。...
2020-11-24 15:30:35 403 1
原创 LEDNet:轻量级编解码网络
Abstract:LEDNet:采用不对称的编码结构。encoder采用Resnet作为主干网络,并在每个残差模块使用channel split和shuffle,在保持较高分辨精度的同时减少计算。decoder中含有attention pyramid network(APN)来减少网络的复杂度。参数< 1M,71 FPS 1080TiChannel Split 分成 1/2下采样单元:两个并行支路:s=2的单个33conv和maxpool 进行叠加。decoder : s=2的33,5
2020-11-20 16:35:42 647
原创 BiSeNet V2
Abstract:low-level details and high-level semantics 对语义分割任务是十分重要的。为了提升模型的推理速度,当前的方法会 sacrifice the low-level details,并导致准确率的减少。为了achieve high accuracy and high efficiency ,我们提出将spatial details and categorical semantics 分开处理。Detail Branch:wide channels an
2020-11-18 15:26:55 1057
原创 Fast Semantic Segmentation for Scene Perception
Abstract:当前大部分的语义分割方法关注精度,而不是效率。本文提出了一种更有 efficient 的神经网络结构,有更少的参数。模型是基于 Resnet 的不对称编解码结构。 在编码器的第一阶段,使用 continuous factorized block 提取 low-level features。 第二阶段使用连续的 dilated block,确保模型有更大的感受野,保持模型 small-scale and shallow。The parametersof our model are onl
2020-11-13 16:23:17 248
原创 BiSeNet:
Abstract:双边分割网络首先设计了Spatial Path with a small stride,用于得到spatial information and 生成 high-resolution features。然后,Context Path with a fast 下采样策略,获得做够的receptive field。并在两条路径顶端引入新的Feature Fusion Module。提出的结构平衡了速度和性能。Cityscapes数据集上2048x1024输入得到了68.4%miou,105F
2020-11-10 20:51:40 766
原创 B_CNN论文笔记
**B_CNN**再经过sum-pool 或者maxpool,后加分类模块。fA:CxM fB: CxNbilinear = MxN -----> reshape to size MN x 1 -----> classification双线性CNN的梯度传播实验本文采用 M(15 layers)conv5+relu ,D(30 layers)conv5-4 + relu。Low dimensional bilinear CNN models对称初始化的b-c
2020-09-03 11:28:37 1367
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人