Abstract:
当前大部分的语义分割方法关注精度,而不是效率。本文提出了一种更有 efficient 的神经网络结构,有更少的参数。模型是基于 Resnet 的不对称编解码结构。 在编码器的第一阶段,使用 continuous factorized block 提取 low-level features。 第二阶段使用连续的 dilated block,确保模型有更大的感受野,保持模型 small-scale and shallow。
The parametersof our model are only 0.2M , 100× less than those of otherssuch as SegNet, etc.
Network
原文对于Initial Block 描述:
On the one hand, the initial block uses the convolution filter to obtain the features.On the other hand, the maxpooling reserves the original information and helps to train faster.
连续的空洞卷积CDB 使模型可能看起来更宽,这将导致一些更小和更薄的类,如标识,栅栏和杆,很难分割,但在一些更大的类,如道路,天空和树,表现得更好。
连续的分离模块CFB It greatly reduces the number of parameters and speeds up the training. (不对称卷积)
down-sampling block 和 up-sampling block