阅读笔记
文章平均质量分 88
zcd_2020
这个作者很懒,什么都没留下…
展开
-
分层多尺度注意力语义分割Hierarchical multi-Scale attention for semantic segmentation
Abstract多尺度推理是提升语义分割效果的常用方法。多个尺度的图像通过一个网络,然后采用平均或最大池化将结果结合。本文,提出了提出了一种注意力为基础的方法结合多尺度预测。我们的注意力机制是分层的,与当前的方法相比这将会有 4 倍的memory efficient。除了加速训练,这使我们训练更大的尺寸,得到更高的准确率。结果:Cityscapes miou 85.1 Mapillary 61.1 miouIntroduction语义分割中某些任务预测在低分辨率下得到好的结果,某些任务预.原创 2020-12-07 15:25:35 · 2352 阅读 · 1 评论 -
Learning to Predict Context-adaptive Convolution for Semantic Segmentation || ECCV2020
Abstract:Long-range 上下文信息对语义分割的性能是十分重要的。早先 re-weighting 的方法是使用 global context 来 re-weight 通道来提升准确率。但是,全局共享的特征向量对于输入图像中不同类的区域可能不是最优的。本文,我们提出了一个 Context-adaptive Convolution Network(CaC-Net) 去预测语义分割特征图中每一个空间位置的spatially-varying feature weighting vector(空间变原创 2020-11-30 17:19:55 · 648 阅读 · 0 评论 -
Fast-SCNN: Fast Semantic Segmentation Network
Abstract:编解码网络是最先进的语义分割结构。由于自动驾驶的兴起,实时性需求不断提升。本文,提出了 fast segmentation convolutional neural network(Fast-SCNN),高分辨率(1024*2048)的实时分割网络。基于现有的两分支快速分割方法,我们提出 “learning to dowmsample” module 能同时计算多分辨率分支的 low-level 特征。我们的网络结合了低等级和高等级特征,在cityscapes得到68%的miou,123原创 2020-11-26 17:49:57 · 741 阅读 · 0 评论 -
Contextual Attention Refinement Network forReal-Time Semantic Segmentation
摘要:为了在分割精度和计算cost间平衡,提出了Contextual Attention Refinement Network(CARNet),通过注意力来指导低等级和高等级特征的融合,来提升精度。我们思考了语义信息,提出了Semantic ContextLoss(SCLoss)。introduction浅层提取到的特征包含更多的低等级细节,例如边缘信息。深层提取的特征包含更多的语义信息,例如带类别和属性的区域。尽管低等级特征包含更多的有用信息,但在最终推断的重要性是不等的。...原创 2020-11-24 15:30:35 · 403 阅读 · 1 评论 -
LEDNet:轻量级编解码网络
Abstract:LEDNet:采用不对称的编码结构。encoder采用Resnet作为主干网络,并在每个残差模块使用channel split和shuffle,在保持较高分辨精度的同时减少计算。decoder中含有attention pyramid network(APN)来减少网络的复杂度。参数< 1M,71 FPS 1080TiChannel Split 分成 1/2下采样单元:两个并行支路:s=2的单个33conv和maxpool 进行叠加。decoder : s=2的33,5原创 2020-11-20 16:35:42 · 652 阅读 · 0 评论 -
BiSeNet V2
Abstract:low-level details and high-level semantics 对语义分割任务是十分重要的。为了提升模型的推理速度,当前的方法会 sacrifice the low-level details,并导致准确率的减少。为了achieve high accuracy and high efficiency ,我们提出将spatial details and categorical semantics 分开处理。Detail Branch:wide channels an原创 2020-11-18 15:26:55 · 1059 阅读 · 0 评论 -
Fast Semantic Segmentation for Scene Perception
Abstract:当前大部分的语义分割方法关注精度,而不是效率。本文提出了一种更有 efficient 的神经网络结构,有更少的参数。模型是基于 Resnet 的不对称编解码结构。 在编码器的第一阶段,使用 continuous factorized block 提取 low-level features。 第二阶段使用连续的 dilated block,确保模型有更大的感受野,保持模型 small-scale and shallow。The parametersof our model are onl原创 2020-11-13 16:23:17 · 248 阅读 · 0 评论 -
BiSeNet:
Abstract:双边分割网络首先设计了Spatial Path with a small stride,用于得到spatial information and 生成 high-resolution features。然后,Context Path with a fast 下采样策略,获得做够的receptive field。并在两条路径顶端引入新的Feature Fusion Module。提出的结构平衡了速度和性能。Cityscapes数据集上2048x1024输入得到了68.4%miou,105F原创 2020-11-10 20:51:40 · 768 阅读 · 0 评论 -
B_CNN论文笔记
**B_CNN**再经过sum-pool 或者maxpool,后加分类模块。fA:CxM fB: CxNbilinear = MxN -----> reshape to size MN x 1 -----> classification双线性CNN的梯度传播实验本文采用 M(15 layers)conv5+relu ,D(30 layers)conv5-4 + relu。Low dimensional bilinear CNN models对称初始化的b-c原创 2020-09-03 11:28:37 · 1367 阅读 · 0 评论 -
Dual Super-Resolution Learning for Semantic Segmentatio || CVPR2020
Dual Super-Resolution Learning for Semantic Segmentatio 用于语义分割的双超分辨率学习Abstract:当前的语义分割通常使用高分辨率输入来获得好的效果,但需要巨大的计算资源受设备的限制。**本文我们提出了一个简单灵活的 two-stream framework 方法,叫做 Dual Super-Resolution Learning (DSRL),在不引入额外算力消耗的情况下提升分割的准确性。方法由 3 部分组成:Semantic Segment原创 2020-07-10 11:13:36 · 619 阅读 · 0 评论 -
Dual Path Networks双分支网络
本文的目的是设计新的path technology。我们发现resnet通过residual path能够重用特征,densenet通过dense connect path能探索新的特征。DPN继承了residual path 和 dense connect path的优点,既能有效地 重用特征也能探索新的特征。图d和e是一样的。block:采用1x1conv,紧接着3x3conv,最后1x1conv输出。最后1x1conv输出的结果split为2部分:一部分作为residual path(elem原创 2020-07-05 15:23:40 · 2591 阅读 · 0 评论 -
Multisource Remote Sensing Data Classification Based on Convolutional Neural Network
Multisource Remote Sensing Data Classification Based on Convolutional Neural Network基于CNN的多源遥感数据分类本文提出了two-branch CNN用于多源遥感数据,该结构通过提取HSI和other sources(LiDAR or VIS)特征,然后全连接层融合。对于HIS branch:是一个dual-tunnel CNN,包含spectral(光谱)tunnel 和 spatial(空间)tunnel。光谱 t原创 2020-07-04 10:56:57 · 1458 阅读 · 5 评论 -
Squeeze-and-Attention Networks for Semantic Segmentation | CVPR2020
Squeeze-and-Attention Networks for Semantic Segmentation语义分割的压缩注意力网络。对SE改进使适用于语义分割Abstrct:当前语义分割方向注意力机制的聚合,由于更多的信息特征增强了性能。然而,注意力机制忽视了语义分割的隐藏任务(pixel grouping),并受限于卷积核的网络形状。本文我们提出了一个新的squeeze-and-attention network(SANet),利用了SA module 去解释分割的两个相显著的特点:i)pix原创 2020-07-03 13:12:03 · 2211 阅读 · 1 评论 -
CascadePSP:级联PSP:通过全局和局部精炼实现对类无关和非常高分辨率的分割
Abstract:最先进的语义分割方法大多是在固定的分辨率范围内。这些分割对于超高分辨率分割不是特别准确的,因为低分辨率的多次上采样不能capture高分辨率物体边缘的详细信息。**本文,提出了一个新的方法不使用高分辨率的训练数据来处理高分辨率的分割问题。CascadePSP网络关键是尽可能的细化和correct local boundaries。尽管我们的网络使用低分辨率的数据训练,但我们的方法能用于任何超高的分辨率图像甚至超过4K。**我们的方法可以视为class-agnostic。在多个数据集进行实原创 2020-06-09 13:01:48 · 2095 阅读 · 0 评论 -
ResNeSt: Split-Attention Networks
Abstract:由于RexNet简单和模块化的结构,许多计算机视觉下游任务仍在使用。我们提出了Split-Attention block能够使注意力across feature-map groups。并且不会引入额外的及计算消耗。Introduction:neural architecture search (NAS)有很好的性能,但是不注重训练的有效性以及gpu内存的使用,需要大量算力。ResNet网络受到大量使用,但最初是为了图像分类设计的,或许不能很好的适用于下流的任务,由于limited原创 2020-05-22 11:37:14 · 390 阅读 · 0 评论 -
Context Prior for Scene Segmentation(CVPR2020)上下文优先的语义分割
Abstract:研究上下文语义的依赖性为得到精准的分割结果,但大多数研究都是区分不同types的语义依赖性,这会损失scene understanding。本文设计了Context Prior Network(CPNet)主要是用于区分intra-class和inter-class,提升语义依赖性。CPNet是在backbone上添加CP Layers with Affinity Loss。ModuleContext Prior Layers是feature map通过Aggregation原创 2020-05-20 10:09:42 · 864 阅读 · 0 评论 -
Efficient Segmentation: Learning Downsampling Near Semantic Boundaries学习语义分割边界附近的下采样
Abstract:为提高语义分割执行速度,会损失一些小物体,降低准确率。提出了新的自适应内容下采样技术(content-adaptive downsampling technique) 学习目标边界附近的采样位置。有利于提升分割边界质量和smaller-size object。...原创 2020-05-01 17:56:40 · 896 阅读 · 0 评论 -
mobilenet v2笔记
MobileNetV2: Inverted Residuals and Linear BottlenecksAbstract:1.依赖于inverted residual structure2.中间层使用highlight 深度可分离卷积3.发现去除narrow layers的non-linear结构,有利于提升表征能力。Introduction:主要的贡献:the inverted ...原创 2020-04-22 14:39:50 · 204 阅读 · 0 评论 -
语义分割的门控形状CNN Gated-SCNN: Gated Shape CNNs for Semantic Segmentation
语义分割的门控形状CNN Gated-SCNN: Gated Shape CNNs for Semantic SegmentationAbstract:(1)提出一种新的用于分割two-stream cnn 结构:shape stream和classical stream(2)结构的关键是:一个new type of gate 用于连接两个分支的intermediate layers(3)...原创 2020-04-13 19:33:41 · 737 阅读 · 2 评论 -
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation笔记
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation(a)是intial block。Input为512x512。Num_filters为13,max_pool为2x2,s=2,concat变成16x512x512(b)bottleneck module:1x1conv reduce dim ...原创 2020-04-02 10:07:44 · 205 阅读 · 0 评论 -
deeplabv3+ 笔记
Deeplab v3+Abstract(1)Deeplab v3+ adds a decoder modeule to refine the segmentation result along object boundaries.(2)Explore the Xception model and apply the depthwise separable convolution to bot...原创 2020-04-01 10:29:16 · 298 阅读 · 0 评论 -
Resnet笔记
Resnet残差网络Introduction(1)Address the degradation problem for deep conv。(2)Shortcut connection: add neither extra params nor computational complexity(3)The dimensions of x and ...原创 2020-03-31 11:13:51 · 138 阅读 · 0 评论 -
mobilenet v1笔记
Mobilenet v1Abstract(1)use depth-wise separable convolutions to build light weight deep neural network(2)Introduce two simple global hyper-parameters that trade off between latency and accuracyInt...原创 2020-03-28 10:58:48 · 154 阅读 · 0 评论