IDEA 30 个好用天花板技巧,敲代码直接接爽到飞。

IDEA 作为Java开发工具的后起之秀,几乎以碾压之势把其他对手甩在了身后,主要原因还是归功于:好用;虽然有点重,但依旧瑕不掩瑜,内置了非常多的功能,大大提高了日常的开发效率,下面汇总了常用的30个使用小技巧,学会之后,让你的撸码效率直接起飞...

  1. 查看代码历史版本

  1. 调整idea的虚拟内存:

  1. idea设置成eclipse的快捷键

  1. 设置提示词忽略大小写

  1. 关闭代码检查

  1. 设置文档注释模板

  1. 显示方法分隔符

  1. 设置多行tab

  1. 快速匹配方法的大括号位置

  1. 代码结尾补全

  1. 模糊搜索方法

  1. 预览某个类的代码

  1. 查看方法在哪里被调用

  1. 代码模板(代码快捷键)

  1. 自动导包、自动移除没用的包

  1. codota插件:可以优先显示使用频率较高的类、方法

  1. 快速查看类、字段的注释

  1. 括号颜色区分

  1. 微服务项目中 将不同项目添加到同一个启动窗口

  1. idea全局设置 (打开新窗口的设置)

  1. java mapper层代码文件和mapper.xml文件相互跳转

  1. 设置idea背景图片

  1. maven tree (查看maven jar包依赖关系)

  1. 快捷键切换回上一个点击开的tab

  1. idea自带的ssh连接工具

  1. 代码调用链路图插件

  1. 获取当前线程dump

  1. idea同个项目不同端口多开

注意:不同idea版本菜单、目录可能有细微差别,自己稍加分析都能找到

1.查看代码历史版本


鼠标在需要查看的java类 右键 找到Local History >> Show History 点开即可看到历史版本,常用于自己忘记代码改了哪些内容 或需要恢复至某个版本 (注意 只能看近期修改 太久了也是看不到的)

2.调整idea的虚拟内存


尽管本质都是去改变 .vmoptions配置文件,但推荐使用Change Memory Settings去调整,选择Edit Custom VM Options 或者在本地磁盘目录更改,通过某些方法破解的idea 很可能造成idea打不开的情况

3.idea设置成eclipse的快捷键


这对eclipse转idea的开发人员来说 非常友好,这样不需要记两套快捷键

4.设置提示词忽略大小写


把这个勾去掉,(有的idea版本是选择选项 选择none即可),例如String 输入string 、String 都可以提示

5.关闭代码检查


与eclipse类似,idea也可以自己关闭代码检查 减少资源使用,但不推荐全部关闭,(是大佬当我没说),把我们项目中不会使用到的关闭就好了

6.设置文档注释模板


文档注释快捷键及模板

https://blog.csdn.net/qq_36268103/article/details/108027486

7.显示方法分隔符


方便查看方法与方法之间的间隔,在代码不规范的项目中 很好用!

8.设置多行tab


idea默认是选择显示单行的,我们把这个去掉,就可以显示多行tab了,在打开tab过多时的场景非常方便!

8.1 tab过多会自动关闭

settings - editor - General - Editor tabs - tab limit 数值设大就好了

9.快速匹配方法的大括号位置


ctrl+[ ctrl+] 可以快速跳转到方法大括号的起止位置,配合方法分隔符使用,不怕找不到方法在哪儿分割了

10.代码结尾补全


例如一行代码补全分号,或者是if(xxx) 补全大括号,按ctrl+shift+enter 无需切换鼠标光标,大幅度提升了编码效率

11.模糊搜索方法


例如People类里面的test方法,按ctrl+shift+alt+n 输入Peo.te 就可以查到该方法了,如果觉得这个快捷键难记 也可以按ctrl+shift+r (查找某个文件名的快捷键 下图中的Files),再手动选择Symbols

12.预览某个类的代码


例如People类里面的test方法,按ctrl+shift+a

例如我们在test类中,有句代码:People p = new People(); 我们想稍微查看一下People这个类,但是tab已经够多了,ctrl+alt+b会打开新的标签,标签多了就混乱了,尤其一堆命名类似的tab,这时候我们可以按ctrl+shift+i 实现预览功能,不占tab

13.查看方法在哪里被调用


ctrl+alt+h 可以清楚看到方法在哪些地方被调用;在知道这个快捷键之前,都是ctrl+h(idea默认 ctrl+shift+f)搜索,肉眼找的…

14.代码模板(代码快捷键)


例如 : eclipse 中的syso是打印控制台输出 ,但是idea默认是sout , 如果非要改成syso 可以在Postfix Completion里面设置,类似的 fori等都是在里面设置

15.自动导包、自动移除没用的包


15.1 手动导包 :alt+enter 手动移除未使用包: crtl+alt+o

16.codota插件:可以优先显示使用频率较高的类、方法


这个根据个人是否要使用 有的时候工具只能作参考,自己记忆才能保证准确

17.快速查看类、字段的注释


这是一个很有用的小技巧 按F2可以快速查看某个类或某个字段的文档注释 ;基于这点 其它IDE应该也是可以快速查看文档注释内容 不仅仅是idea特性,这也是为什么阿里编码规范里面会明确声明实体类字段需要用文档注释 而不能使用双斜杠// 注释 ,还记得刚看到这个规范的时候 很不理解 特地去百度 看到有人说就是个习惯问题 很显然不能说服人,直到发现F2可以快速查看之后 恍然大悟!

18.括号颜色区分


Rainbow Brackets 插件 成对的括号用相同的颜色表示出来了

19.微服务项目中将不同项目添加到同一个启动窗口


步骤:View ——>Tool Windows ——> services ——>add services

20.idea全局设置(打开新窗口设置)


例如我们打开新窗口时,maven配置会恢复 这时就需要对打开新窗口的设置进行修改 达到一个全局的目的。

在低版本idea中 也是在File下 例如idea2018是叫other settings

21.java mapper层代码文件和mapper.xml文件相互跳转


Free MyBatis plugin 插件

点击绿色箭头可以直接跳转 非常方便

22.设置idea背景图片


BackgroundImage插件

设置喜欢的图片作为背景图

23.maven tree(查看maven jar包依赖关系)


如果是使用 mvn dependency:tree 命令 , 结果是下图这样 很不方便查看

我们可以在idea右上角点击这个ShowDependencies按钮 以图片形式展示出来 图片按住ctrl和鼠标滑轮 可以放大,这个在排除依赖冲突 查看jar包来源时 非常好用

有的时候 可能莫名其妙看不到这个图标 ,我们可以点一下设置

把这个勾上,它就能显示了,等显示后,再把这个勾去掉

24.快捷键切换回上一个点开的tab


当我们打开了多个tab的时候 , 想要快速回到上一个点击的tab中 有的时候肉眼很难找

我们可以用快捷键 alt + ← 键 (eclipse版快捷键 idea默认快捷键需要自测) ,有的时候我们在后面tab编辑了内容 按一次可能不够 需要再多按几次 ,相应的 alt + → 切换到下一个点击的tab

常见应用场景:debug发生类跳转时 、利用快捷键在其它类中创建方法时

即使两个tab不相邻 也可以切换回去

25.idea自带的ssh连接工具


类似的idea还有自带的数据库连接工具 但是视图界面并不如Navicat 所以很多人都不选择用
  • 第一步:配置账号密码

  • 第二步:开启ssh会话

26.代码调用链路图插件


SequenceDiagram 插件

这其实是本文第13点的上位替代方案,idea自带的快捷键查看代码调用,只是以菜单形式展示,不太直观,如果是自己写的代码或比较规范的代码,那用自带的也就无所谓,如果是比较复杂的源码或不规范的代码,那使用 SequenceDiagram 会直观特别多。

在要查看的java文件鼠标右键,点击 Sequence Diagram

效果示例:

27.获取当前线程dump


在断点调试的时候,我们可以通过点击下图红色箭头指向的相机图标,获取当前线程的dump信息。

这个功能有什么用呢?我们可以通过线程名,分析当前是哪个线程执行的,在多线程环境下对代码运行分析起到辅助作用。

比如下图1, run()方法是通过main主线程执行的,只是方法调用,并没有启动多线程(这是我们熟知结论的实践证明)

当我们把run方法改成start()方法时,可以看到是线程thread0执行的。

28.idea同个项目不同端口多开


这是个非常实用的功能,可以模拟集群 测试负载均衡。

此外 在开发阶段也是非常好用,开发过程中,让别人直接连自己本地测试 是不是非常方便?

那自己又想打断点调试 会影响别人 怎么办呢 ?这个时候多开的作用就体现出来了!

网上很多方法提到勾选 Allow parallel run (不同版本idea 名称不一样) ,我也亲眼见过有老师是可以多开启动的, 但我本地启动发现每次都会同时同端口启动多个,不知道是版本问题还是操作问题,这里我用的是另一种有效的方法:

VM options 加上

# 8993是区别于 application.yml 配置中 port 的另一个端口,达到不同端口多开的效果-Dserver.port=8993

<think>好的,我现在需要解释Spark的本地版运行原理。用户可能已经了解Spark和Hadoop的区别,现在想深入Spark的具体运行方式。首先,我得确保自己理解本地模式的概念,以及它与集群模式的区别。 本地模式应该是在单机上运行Spark,不需要分布式环境。但具体是怎么运作的呢?可能需要提到Spark的Driver、Executor在本地如何分配。用户可能想知道为什么本地模式适合开发和测试,还有资源调用的机制。 记得之前学过,Spark的架构中有Driver程序,负责调度任务,而Executor执行任务。在本地模式下,可能Driver和Executor都在同一个JVM进程中运行,或者分成多个线程。需要确认这点,避免错误。 资源管理方面,本地模式可能不使用YARN或Mesos,而是直接用本地资源。比如,设置master为local[*],使用所有CPU核心。要解释线程数和资源分配的关系。 还要提到任务调度,本地模式下任务如何分解成Task,由Executor执行。可能涉及DAG调度和任务划分,但本地模式下这些步骤是否简化了? 另外,数据存储方面,本地模式如何处理数据?可能还是从本地文件系统读取,比如HDFS的本地模拟,或者直接读本地文件。需要区分存储和计算的不同。 易用性和适用场景方面,本地模式适合开发和调试,因为不需要搭建集群,但性能有限。需要强调这些优缺点。 需要检查是否有遗漏的关键点,比如启动流程、组件交互、资源限制等。还要用简单易懂的比喻,比如把本地模式比作在个人电脑上模拟整个Spark流程,帮助用户理解。 最后,结构要清晰,分点说明原理、组件、资源调度、适用场景等,保持与之前的回答风格一致,使用例子和比喻,避免技术术语过多。</think>### Spark本地版运行原理(通俗版) #### **1. 一句话概括** Spark本地模式就像**在个人电脑上模拟小型“分布式计算”**,所有计算任务都跑在**单台机器的内存和CPU**中,无需搭建集群,适合快速测试和开发。 --- #### **2. 核心原理拆解** **▎关键角色** - **Driver(指挥官)**: - 负责解析代码、拆分任务(比如你的`filter()`或`map()`操作) - 本地模式下,Driver直接在你的电脑上运行(比如IDEA或Jupyter Notebook) - **Executor(打工人)**: - 真正干活的“计算单元”,负责执行具体的Task - **本地模式下**:Executor不是独立的进程,而是以**线程**形式存在(省钱省资源) **▎运行流程** 1. **启动**:设置`master("local[*]")`(`*`代表用满电脑所有CPU核) 2. **任务拆分**:Driver将代码转换成**有向无环图(DAG)**,拆分成多个Stage和Task 3. **模拟分发**:Driver假装自己是“集群老大”,把Task分配给本机的“线程Executor” 4. **执行计算**:所有Task在本地内存中快速流转,**避免网络传输**(速度比集群模式快,但数据量受限于内存) --- #### **3. 本地模式的“障眼法”** 虽然叫“本地版”,但Spark依然保留了**分布式计算的逻辑框架**,只是资源从“多台机器”变成“单机多线程”。 - **举个栗子**: - 你写了一个统计词频的Spark程序 - 本地模式下,Spark会像在集群中一样: 1. 拆分文件 → 分片读取数据 2. 启动多个线程并行处理不同分片 3. 汇总结果 - 但所有操作都在你电脑的内存中完成,**没有跨机器通信** --- #### **4. 资源调度真相** | **资源类型** | **本地模式处理方式** | |--------------|----------------------------| | **CPU** | 用线程模拟并行(比如`local[4]`=4线程) | | **内存** | Driver和Executor共享电脑内存,容易OOM(数据量大时崩给你看) | | **磁盘** | 临时数据默认写本地硬盘(可配置) | --- #### **5. 适用场景** - **✅ 适合**: - 开发调试(代码写完立刻测试,不用等集群部署) - 小数据量计算(比如学习Spark语法、跑Demo) - **❌ 不适合**: - 大数据处理(本地内存扛不住) - 生产环境(稳定性、资源隔离性差) --- #### **6. 动手体验** **代码示例(PySpark):** ```python from pyspark.sql import SparkSession # 启动本地模式(使用4个线程) spark = SparkSession.builder \ .master("local[4]") \ .appName("Local Demo") \ .getOrCreate() # 模拟分布式计算(实际在本地线程跑) data = [1, 2, 3, 4, 5] rdd = spark.sparkContext.parallelize(data, 2) # 分成2个分区 print(rdd.map(lambda x: x*2).collect()) # 输出 [2,4,6,8,10] spark.stop() ``` --- ### **总结** - **本质**:用线程模拟分布式,保留Spark核心逻辑 - **优点**:零成本快速验证,无需复杂环境 - **缺点**:性能和规模天花板明显(毕竟你的电脑不是超级计算机😂) > **小技巧**:本地模式调试通过后,只需修改`master`配置(比如`yarn`),同一份代码直接扔到集群运行!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一枚务实的码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值