图(Graph):表示“多对多”的关系。
包含:一组顶点:通常用V(Vertex)表示顶点集合
一组边:通常用E(Edge)表示边的集合
边是顶点对:(v,w)∈E,其中v,w∈V
有向边<v,w>表示从v指向w的边(单行线)
不考虑重边和自回路
抽象数据类型定义
类型名称:图
数据对象集:G(V,E)由一个非空的有限顶点集合V和一个有限边集合E组成
操作集:对于任意图G∈Graph,以及v∈V,e∈E
常见术语
无向图、有向图、网络......
怎样在程序中表示一个图
邻接矩阵G[N][N]-N个顶点从0到N-1编号
对于无向图的存储,怎样可以节省一半空间?
用一个长度为N(N+1)/2的1维数组A存储{G00,G10,G11,......Gn-1,n-1},则Gij在A中对应的下标是:
(i*(i+1)/2+j))。
对于网络,只要把G[i][j]的值定义为边<vi,vj>的权重即可。
邻接矩阵——直观、简单、好理解。方便检查任意一对顶点间是否存在边。方便查找任一顶点的所有邻接点。方便计算任一顶点的度
浪费空间——但是在存储稀疏图(点很多而边很少)有大量无效元素。
浪费时间——统计稀疏图中
图的遍历
深度优先搜索(Depth First Search,DFS)
广度优先搜索(Breadth First Search,BFS)
为什么需要两种遍历?
图不连通怎么办?
连通:如果从v到w存在一条(无向)路径,则称v和w是连通的。
路径:v到w的路径是一系列顶点的集合,其中任一对相邻的顶点间都有图中的边。路径的长度是路径中的边数(如果带权,则是所有边的权重和)。如果v到w之间所有顶点都不同,则称为简单路径
回路:起点等于终点的路径
连通图:图中任意两点均连通
连通分量:无向图的极大连通子图
极大顶点数:再加一个顶点就不连通了
极大边数:包含子图所有顶点相连的所有边
对有向图
强连通:有向图中顶点v和w之间存在双向路径,则称v和w是强连通的
强连通图:有向图中任意两顶点均强连通
强连通分量:有向图的极大强连通子图
void DFS(vertex V)
{
visited[V]=true;
for(v的每个邻结点w)
if(!visited[w])
DFS(w);//每调用一次DFS(V),就把V所在的连通分量遍历了一遍,
}
void ListComponents(Graph G)
{
for(each V in G)
if(!visited[V]){
DFS(V);}
}