图(Graph):表示“多对多”的关系。

包含:一组顶点:通常用V(Vertex)表示顶点集合

          一组边:通常用E(Edge)表示边的集合

                 边是顶点对:(v,w)∈E,其中v,w∈V

                有向边<v,w>表示从v指向w的边(单行线)

                  不考虑重边和自回路

抽象数据类型定义

类型名称:图

数据对象集:G(V,E)由一个非空的有限顶点集合V和一个有限边集合E组成

操作集:对于任意图G∈Graph,以及v∈V,e∈E

常见术语

无向图、有向图、网络......

怎样在程序中表示一个图

邻接矩阵G[N][N]-N个顶点从0到N-1编号


对于无向图的存储,怎样可以节省一半空间?

用一个长度为N(N+1)/2的1维数组A存储{G00,G10,G11,......Gn-1,n-1},则Gij在A中对应的下标是:

(i*(i+1)/2+j))。

对于网络,只要把G[i][j]的值定义为边<vi,vj>的权重即可。

邻接矩阵——直观、简单、好理解。方便检查任意一对顶点间是否存在边。方便查找任一顶点的所有邻接点。方便计算任一顶点的度

浪费空间——但是在存储稀疏图(点很多而边很少)有大量无效元素。

浪费时间——统计稀疏图中



图的遍历

深度优先搜索(Depth First Search,DFS)

广度优先搜索(Breadth First Search,BFS)


为什么需要两种遍历?

图不连通怎么办?

连通:如果从v到w存在一条(无向)路径,则称v和w是连通的。

路径:v到w的路径是一系列顶点的集合,其中任一对相邻的顶点间都有图中的边。路径的长度是路径中的边数(如果带权,则是所有边的权重和)。如果v到w之间所有顶点都不同,则称为简单路径

回路:起点等于终点的路径

连通图:图中任意两点均连通

连通分量:无向图的极大连通子图

       极大顶点数:再加一个顶点就不连通了

        极大边数:包含子图所有顶点相连的所有边

对有向图

强连通:有向图中顶点v和w之间存在双向路径,则称v和w是强连通的

强连通图:有向图中任意两顶点均强连通

强连通分量:有向图的极大强连通子图

void DFS(vertex V)
{
   visited[V]=true;
   for(v的每个邻结点w)
       if(!visited[w])
           DFS(w);//每调用一次DFS(V),就把V所在的连通分量遍历了一遍,
}
void ListComponents(Graph G)
{
    for(each V in G)
        if(!visited[V]){
            DFS(V);}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值