kruskal板子及证明

我们先从一个点出发吧。
1.对于在连通图中的一个点,所有连接这个点的边中的权值最小边,必定是此图最小生成树中的一条边。
证明:比如,这个点是x,x到y的边最小,假设这条边不在最小生成树中,那就有类似x–>a–>y在最小生成树中(因为在生成树中任意两点之间都有通路,且唯一),然而x–>y比x–>a要小,包含x–>a–>y的树不是最小生成树,与题设矛盾。由此得证。

这个推论中的点替换成连通块依然成立。即2.如果某个连通图属于最小生成树,那么所有从外部连接到该图的边中的一条最短的边必然属于最小生成树。
也可以借此证明,3.对于任意一个图,他最小生成树中每种权值的边的数量是一定的。

这样prim和kruskal算法就好理解了。

当最小生成树被拆分成彼此独立的若干个连通分量的时候,所有能够连接任意两个连通分量的边中的一条最短边必然属于最小生成树。 这个也是把每个连通分量看做一个点就好了。也就是Kruskal的核心思想了!

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Kruskal算法是一种用于求解最小生成树的贪心算法。其基本思想是将图中的所有边按照权值从小到大排序,然后依次加入到生成树中,如果加入某条边会形成环,则不加入该边,直到生成树中包含了所有的n个顶点为止。下面是Kruskal算法的证明: 首先,我们需要证明Kruskal算法得到的生成树是一棵树。因为Kruskal算法每次加入的边都不会形成环,所以生成树中不会存在环。又因为每次加入的边都是连接两个不同的连通块,所以最终生成的树是连通的。因此,Kruskal算法得到的生成树是一棵树。 接下来,我们需要证明Kruskal算法得到的生成树是最小生成树。假设Kruskal算法得到的生成树不是最小生成树,那么存在另外一棵生成树T',使得T'的权值小于Kruskal算法得到的生成树T的权值。因为T'是一棵生成树,所以T'包含了G的所有n个顶点。我们可以将T'中的边按照权值从小到大排序,然后依次加入到生成树中,如果加入某条边会形成环,则不加入该边,直到生成树中包含了所有的n个顶点为止。因为T'是一棵生成树,所以这个过程中不会出现环。又因为T'的权值小于T的权值,所以在这个过程中,T'会先加入一些边,而这些边也一定是Kruskal算法得到的生成树T中的边。因此,T'和T至少有一些边是相同的。我们设这些边的集合为E1。又因为T'是一棵生成树,所以E1中的边连接了T'中的所有顶点。我们将E1中的边从T'中删除,得到一个由若干个连通块组成的森林。我们将这个森林中的每个连通块看作一个顶点,两个连通块之间的边的权值为连接这两个连通块的边在G中的权值。我们可以证明,这个图是一个连通图。因为T'是一棵生成树,所以T'中的任意两个顶点之间都存在一条路径。如果这条路径不经过E1中的边,那么这条路径也是连接这两个连通块的路径。如果这条路径经过E1中的边,那么我们可以将这条路径分成两部分,一部分在E1中,一部分不在E1中。因为E1中的边连接了T'中的所有顶点,所以这条路径的两个端点一定在E1中的边上。我们可以将这条路径中E1中的边替换成连接这些边的顶点在T中的路径,得到一条不经过E1中的边的路径。因此,这个图是一个连通图。 我们将这个图中的所有边按照权值从小到大排序,然后依次加入到生成树中,如果加入某条边会形成环,则不加入该边,直到生成树中包含了所有的连通块为止。因为这个图是一个连通图,所以最终生成的树包含了所有的顶点。又因为这个图中的边的权值都小于T'中的边的权值,所以这个生成树的权值小于T'的权值。因此,我们得到了一个权值更小的生成树,这与T'是最小生成树的假设矛盾。因此,Kruskal算法得到的生成树是最小生成树。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值