图论
lpls1
这个作者很懒,什么都没留下…
展开
-
dij求最长路
4.更新d[]时,d[v]=Math.max(d[v], Math.min(w[u][v], d[u]));2.所有d[i]初始值为cost[1][i],而非将d[i]初始化为INF的d[1]为0。1.改变cost[][]的初始值为0,而非INF.因为更新d[]时要选最大的啦!1.变形的dijkstra,寻找从1到N的所有[通路中的那条最小边]的值中的。3.寻找要放入vis的点u时,找值最大的,而非最小的。2.用于求多点到固定点的最短路。以下为AC代码,注意注释。原创 2022-10-20 17:41:20 · 784 阅读 · 0 评论 -
SPFA与dijkstra+heap的比较
https://www.cnblogs.com/flipped/p/6830073.html简而言之就是如果是稠密图,Dijkstra+heap比SPFA快。稀疏图则SPFA更快。(cnblog真好看啊,csdn你…不想吐槽了)转载 2020-02-16 19:21:50 · 266 阅读 · 1 评论 -
链式前向星
传送门转载 2020-02-10 13:37:16 · 134 阅读 · 0 评论 -
匈牙利算法求最大匹配(DFS、BFS实现)
求解最大匹配问题的一个算法是匈牙利算法。交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边…形成的路径叫交替路。增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。例如,图 5 中的一条增广路如图 6 所示(图中的匹配点均用红色标出):增广路有一个重要特点:非匹配边比匹配边多一条。因此,研究增...原创 2020-02-10 11:49:40 · 3517 阅读 · 0 评论 -
匹配、边覆盖、独立集和顶点覆盖
记图G=(V,E).匹配:在G中两两之间没有公共端点的边集合边覆盖:G中的任意端点都至少是边集F中的某条边的端点的边集合F⊆E独立集:在G中两两之间互不相连的点集合顶点覆盖:G中的任意边的至少一个端点属于S的顶点集合S⊆V此外,它们还满足:(a)对于不存在孤立点的图,|最大匹配|+|最小边覆盖|=|V|(b)|最大独立集|+|最小点覆盖|=|V|证明思路:(a)可以通过向最大匹配...原创 2020-02-09 23:24:39 · 1228 阅读 · 0 评论 -
dijkstra、heap+dijkstra、扩展应用
1.图中点与路均有权值,且存在多条最短路,要求输出最短路条数、点权和最小的最短路路径及其点权和。1)如何求最短路数量?数据结构:开一个count[]数组,记录到某点的最短路条数。代码:在dij算法中的“更新各点最短路d[i]”的部分,除了判断体①d[u]>d[v]+cost[v][u],还要新增判断体②d[u]==d[v]+cost[v][u];在前者,更新count[u]=count...原创 2020-01-22 17:58:28 · 233 阅读 · 0 评论 -
网络流之最小割
最小割是什么?对于给定网络,为了保证没有从s到t的路径,需要删去的边的总容量的最小值为多少?这个问题就是让你求最小割。最大流最小割定理:最小割=最大流。可以利用最大流算法求解最小割。由ff算法的正确性可以知道,如果所有边的容量都是整数,那么最大流和最小割也是整数。...原创 2020-01-21 22:29:30 · 187 阅读 · 0 评论 -
网络流之最大流,Ford-Fulkerson方法
过程:f(e):e上已流过的流量c(e):e上允许流过的最大流量残余网络:f(e)小于c(e)的边e && 满足f(e)>0的e对应的反向边rev(e)组成的网络增广路:残余网络上的s–>t路径求解最大流:就是不断找图中的增广路,每找到一条,更新一次增广路上的各边的流量及其反向边的流量。板子:public class Main { static int...原创 2020-01-16 17:42:03 · 380 阅读 · 0 评论 -
Codeforces Round #597 (Div. 2) D.Shichikuji and Power Grid(虚拟原点在最小生成树中的应用)
题意:n个城市供电,要求每个城市或自己建立发电站,或与建立了发电站的城市直接或间接相连。给出每个点的横纵坐标xi,yi,以及每个点的建站花费和连线参数wi,ci,如果两座城市i、j之间连线,则花费为(ci+cj)*(ij之间的曼哈顿距离)。要求求出最小花费和建站的城市的编号以及连线的城市编号对。我一开始的想法是,先找出建站花费最小的点,建站,然后对所有点跑一遍prim。之后,如果有的点的建站花...原创 2019-11-07 17:24:43 · 154 阅读 · 0 评论 -
最短路问题 待整理
注意如果一个图存在负权环那么这个图没有最短路概念:1.时间复杂度:T=O(|V|*|E|)2.用于求固定点到其余点的最短路。3.:SPFA算法。原创 2019-09-23 18:19:03 · 164 阅读 · 0 评论 -
图论相关问题类型总结
1.最短路固定点到其余所有点的最短路任意点到其余所有点的最短路2.最小生成树让一颗小树长大合并许多棵树3.TSP(旅行商问题):求走过图中所有点一次的最短路径...原创 2019-09-02 20:40:33 · 266 阅读 · 0 评论