LCS及其应用(最长公共子序列)

本文深入探讨了求解两个字符串的最长公共子序列(LCS)的经典动态规划算法。通过dp[i][j]记录字符串a的前i个字符与字符串b的前j个字符的LCS长度,递推公式清晰地展示了状态转移过程。当a[i]等于b[j]时,LCS长度为dp[i-1][j-1]+1;反之,则取dp[i-1][j]与dp[i][j-1]的最大值。
摘要由CSDN通过智能技术生成

d p [ i ] [ j ] dp[i][j] dp[i][j]表示
a a a串的前 i i i个与b串的前 j j j个的最长公共子序列的长度。则:
d p [ i ] [ j ] = { m a x ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) a [ i ] ! = b [ i ] d p [ i − 1 ] [ j − 1 ] + 1 a [ i ] = b [ i ] dp[i][j]= \begin{cases} max(dp[i-1][j],dp[i][j-1])& a[i]!=b[i]\\ dp[i-1][j-1]+1& a[i]=b[i] \end{cases} dp[i][j]={max(dp[i1][j],dp[i][j1])dp[i1][j1]+1a[i]!=b[i]a[i]=b[i]

for(int i=1;i<=len;i++) {
				for(int j=1;j<=len;j++) {
					if(a[i-1]==b[j-1])dp[i][j]=dp[i-1][j-1]+1;
					else dp[i][j]=Math.max(dp[i-1][j], dp[i][j-1]);
				}
			}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值