heap+dijkstra
堆优化的dij,就是在更新最短路时,将更新最短距离的点的编号和当前最短距离压入优先队列,下一次再取点的时候不需要遍历了。注意当取出的点的最短距离大于更新之后的最短距离时,就弃之不用。
时间复杂度O(|E|log(|V|)。
板子:
public class Main {
static int maxn=220,n,INF=Integer.MAX_VALUE/2;
static int dist[]=new int[maxn];
static Vector<Edge> G[]=new Vector[maxn];
static class Edge{
//自己看情况写吧
}
static class Hpnd implements Comparable<Hpnd>{
int v,w;
public Hpnd(int v,int w) {
this.v=v;
this.w=w;
}
@Override
public int compareTo(Hpnd o) {
// TODO Auto-generated method stub
return this.w-o.w;
}
}
static void dij(int s) {
for(int i=0;i<=n;i++) {
dist[i]=INF;
path[i]=-1;
}
dist[s]=0;
count[s]=1;
PriorityQueue<Hpnd> q=new PriorityQueue<Main.Hpnd>();
Hpnd nd;
q.add(new Hpnd(s,0));
//vis[s]=true;
Edge e;
while(!q.isEmpty()) {
nd=q.poll();
if(nd.w>dist[nd.v]) continue;
int u=nd.v;
for(int i=0;i<G[u].size();i++) {
e=G[u].get(i);
if(dist[e.v]>dist[u]+e.w) {
dist[e.v]=dist[u]+e.w;
q.add(new Hpnd(e.v,dist[e.v]));
}
}
}
}
}
扩展应用
1.图中点与路均有权值,且存在多条最短路,要求输出最短路条数、点权和最小的最短路路径及其点权和。
1)如何求最短路数量?
数据结构:开一个
count[]数组,记录到某点的最短路条数。
代码:在dij算法中的“更新各点最短路d[i]”的部分,除了判断体①d[u]>d[v]+cost[v][u],还要新增判断体②d[u]==d[v]+cost[v][u];在前者,更新count[u]=count[v],在后者更新count[u]+=count[v].
初始化:count[s]=0,其余为0
2)如何找到最短路中的最大点权和?
数据结构:开sum[]数组记录到点i的最短路径中点权和最大的路径的点权和(好绕= =)。开val[]存每个点的和,这个是固定的。
代码:在判断体①中,写sum[u]=sum[v]+val[u];在②中,if(sum[u]<sum[v]+val[u]),更新sum[u]=sum[v]+val[u];
初始化:sum[s]=val[s];其余为0
3)如何将2)中的那条路记录下来?
path[]数组反向记录即可.即path[i]=j表示点i的最短路是由j点转来的.如果正向,由于一个点可能通向多个点,且均为到这些点的最短路,那么会产生覆盖.
天梯赛 L2-001 紧急救援 ac代码
public class Main {
static int INF=0xffffff;
static int dist[]=new int[550],cost[][]=new int[550][550],
path[]=new int[550],sum[]=new int[550],val[]=new int[550],count[]=new int[550];
static boolean used[]=new boolean[550];
static void dij(int s,int n) {
int res=0;
for(int i=0;i<n;i++) {
dist[i]=INF;
used[i]=false;
path[i]=-1;
sum[i]=0;
count[i]=0;
}
count[s]=1;
sum[s]=val[s];
//used[s]=true;
dist[s]=0;
int v;
while(true) {
v=-1;
for(int u=0;u<n;u++) {
if(!used[u]&&(v==-1||dist[u]<dist[v])) {
v=u;
}
}
if(v==-1) {
break;
}
used[v]=true;
for(int u=0;u<n;u++) {
if(dist[u]>dist[v]+cost[v][u]) {
count[u]=count[v];
dist[u]=dist[v]+cost[v][u];
path[u]=v;
sum[u]=sum[v]+val[u];
}else if(dist[u]==dist[v]+cost[v][u]) {
count[u]+=count[v];
if(sum[u]<sum[v]+val[u]) {
sum[u]=sum[v]+val[u];
path[u]=v;
}
}
}
}
}
public static void main(String args[]) throws IOException {
//System.out.println(Integer.parseInt("-5"));
PrintWriter out=new PrintWriter(System.out);
InputReader sc=new InputReader(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
int s=sc.nextInt();
int d=sc.nextInt();
for(int i=0;i<n;i++) {
val[i]=sc.nextInt();
}
for(int i=0;i<n;i++) {
for(int j=i;j<n;j++) {
cost[i][j]=INF;
cost[j][i]=INF;
}
}
int u,v,c;
for(int i=0;i<m;i++) {
u=sc.nextInt();
v=sc.nextInt();
c=sc.nextInt();
cost[u][v]=c;
cost[v][u]=c;
}
dij(s,n);
out.println(count[d]+" "+sum[d]);
int cur=d;
ArrayList<Integer> list=new ArrayList<Integer>();
list.add(d);
while(path[cur]!=-1) {
list.add(path[cur]);
cur=path[cur];
}
for(int i=list.size()-1;i>=0;i--) {
out.print(list.get(i));
if(i!=0) {
out.print(" ");
}
}
out.flush();
out.close();
}
}