李宏毅助教GNN视频笔记

本文详细介绍了多种基于空间的图神经网络模型,包括NN4G、DCNN、DGC、MoNET、GraphSAGE、GAT,探讨了如何利用节点邻居信息进行卷积操作,以及在不同模型中的卷积和聚合策略,适用于图分类、节点分类等任务。
摘要由CSDN通过智能技术生成

介绍

一、Gragh
主要强调节点和边的性质。

二、GNN
1.GNN可以做分类和generation
2.三个小问题:
我们如何利用结构和关系来帮助我们的模型?
如果图像更大,比如20k 节点呢?
如果我们没有所有的标签呢?(标签不多情况下)
在这里插入图片描述
一个节点可以从它的邻居那里学习结构,可以利用卷积

如何利用卷积将节点嵌入到特征空间中?
解决方案1: 将卷积(相关)概念推广到图形 > 基于空间的卷积
解决方案2: 回到信号处理中卷积的定义 > 基于谱的卷积

**

策略

在这里插入图片描述

任务、数据集和基准

Tasks
半监督节点分类
回归
图分类
图表示学习
链路预测

数据集
(1)CORA: citation network. 2.7k nodes and 5.4k links
(2)U-MUTAG: 188 molecules with 18 nodes on average

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>