介绍
一、Gragh
主要强调节点和边的性质。
二、GNN
1.GNN可以做分类和generation
2.三个小问题:
我们如何利用结构和关系来帮助我们的模型?
如果图像更大,比如20k 节点呢?
如果我们没有所有的标签呢?(标签不多情况下)
一个节点可以从它的邻居那里学习结构,可以利用卷积
如何利用卷积将节点嵌入到特征空间中?
解决方案1: 将卷积(相关)概念推广到图形 > 基于空间的卷积
解决方案2: 回到信号处理中卷积的定义 > 基于谱的卷积
**
策略
任务、数据集和基准
Tasks
半监督节点分类
回归
图分类
图表示学习
链路预测
数据集
(1)CORA: citation network. 2.7k nodes and 5.4k links
(2)U-MUTAG: 188 molecules with 18 nodes on average